dipole.cpp 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/* Script for the interaction of a vortex dipole with a wall */

/* ------------------ Top matter --------------------- */

// Required headers
#include "../../BaseCase.hpp"      // Support file containing default implementations of several functions
#include "../../Options.hpp"       // config-file parser
#include <random/normal.h>         // Blitz random number generator

using namespace ranlib;

// Tensor variables for indexing
blitz::firstIndex ii;
blitz::secondIndex jj;
blitz::thirdIndex kk;

/* ------------------ Define parameters --------------------- */

// Grid scales
double Lx, Ly, Lz;              // Grid lengths (m)
int    Nx, Ny, Nz;              // Number of points in x, y, z
double MinX, MinY, MinZ;        // Minimum x/y/z points (m)
// Grid types
DIMTYPE intype_x, intype_y, intype_z;
string grid_type[3];

// Physical parameters
double rho_0;                   // reference density (kg/m^3)
double visco;                   // viscosity (m^2/s)
double mu;                      // dynamic viscosity (kg/(m·s))
// helpful constants
const int Num_tracers = 0;      // number of tracers (density and dyes)

// Problem parameters
double U0;                      // initial velocity maximum
double X1;                      // initial x-position of dipole 1
double Z1;                      // initial z-position of dipole 1
double X2;                      // initial x-position of dipole 2
double Z2;                      // initial z-position of dipole 2
double r0;                      // radius of dipole

// Temporal parameters
double final_time;              // Final time (s)
double plot_interval;           // Time between field writes (s)
double dt_max;                  // maximum time step (s)

// Restarting options
bool restarting;                // are you restarting?
double initial_time;            // initial start time of simulation
int restart_sequence;           // output number to restart from

// Dump parameters
bool restart_from_dump;         // restarting from dump?
double compute_time;            // requested computation time
double avg_write_time;          // average time to write all output fields at one output
double real_start_time;         // real (clock) time when simulation begins
double compute_start_time;      // real (clock) time when computation begins (after initialization)

// other options
double perturb;                 // Initial velocity perturbation
bool compute_enstrophy;         // Compute enstrophy?
bool compute_dissipation;       // Compute dissipation?
bool compute_BPE;               // Compute background potential energy?
bool compute_internal_to_BPE;   // Compute BPE gained from internal energy?
bool compute_stresses_top;      // Compute top surface stresses?
bool compute_stresses_bottom;   // Compute bottom surface stresses?
bool write_pressure;            // Write the pressure field?
int iter = 0;                   // Iteration counter

/* ------------------ Adjust the class --------------------- */

class userControl : public BaseCase {
    public:
        // Grid and topography arrays
        Array<double,1> xx, yy, zz;     // 1D grid vectors
        DTArray *Hprime;                // derivative of topography vector

        // Arrays and operators for derivatives
        Grad * gradient_op;
        DTArray *temp1, *dxdydz;

        // Timing variables (for outputs and measuring time steps)
        int plot_number;        // plot output number
        double next_plot;       // time of next output write
        double comp_duration;   // clock time since computation began
        double clock_time;      // current clock time

        // Size of domain
        double length_x() const { return Lx; }
        double length_y() const { return Ly; }
        double length_z() const { return Lz; }

        // Resolution in x, y, and z
        int size_x() const { return Nx; }
        int size_y() const { return Ny; }
        int size_z() const { return Nz; }

        // Set expansions (FREE_SLIP, NO_SLIP (in vertical) or PERIODIC)
        DIMTYPE type_x() const { return intype_x; }
        DIMTYPE type_y() const { return intype_y; }
        DIMTYPE type_z() const { return intype_z; }

        // Record the gradient-taking object
        void set_grad(Grad * in_grad) { gradient_op = in_grad; }

        // Coriolis parameter, viscosity, and diffusivities
        double get_visco() const { return visco; }

        // Temporal parameters
        double init_time() const { return initial_time; }
        int get_restart_sequence() const { return restart_sequence; }
        double get_dt_max() const { return dt_max; }
        double get_next_plot() { return next_plot; }

        // Number of tracers (the first is density)
        int numtracers() const { return Num_tracers; }

        /* Initialize velocities */
        void init_vels(DTArray & u, DTArray & v, DTArray & w) {
            if (master()) fprintf(stdout,"Initializing velocities\n");
            // if restarting
            if (restarting and !restart_from_dump) {
                init_vels_restart(u, v, w);
            } else if (restarting and restart_from_dump) {
                init_vels_dump(u, v, w);
            } else{
                // initial dipole (use v as the vector r^2)
                u = 0.5*U0 * 
                    ( (zz(kk)-Z1) * exp(-(pow(xx(ii)-X1,2) + pow(zz(kk)-Z1,2))/(r0*r0))
                     -(zz(kk)-Z2) * exp(-(pow(xx(ii)-X2,2) + pow(zz(kk)-Z2,2))/(r0*r0))
                    );
                v = 0;
                w = 0.5*U0 *
                    (-(xx(ii)-X1) * exp(-(pow(xx(ii)-X1,2) + pow(zz(kk)-Z1,2))/(r0*r0))
                     +(xx(ii)-X2) * exp(-(pow(xx(ii)-X2,2) + pow(zz(kk)-Z2,2))/(r0*r0))
                    );
                // Add a random perturbation to trigger any 3D instabilities
                int myrank;
                MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
                Normal<double> rnd(0,1);
                for (int i = u.lbound(firstDim); i <= u.ubound(firstDim); i++) {
                    rnd.seed(i);
                    for (int j = u.lbound(secondDim); j <= u.ubound(secondDim); j++) {
                        for (int k = u.lbound(thirdDim); k <= u.ubound(thirdDim); k++) {
                            u(i,j,k) += perturb*rnd.random();
                            w(i,j,k) += perturb*rnd.random();
                            if (Ny > 1)
                                v(i,j,k) += perturb*rnd.random();
                        }
                    }
                }
                // Write the arrays
                write_array(u,"u",plot_number);
                write_array(w,"w",plot_number);
                if (Ny > 1) {
                    write_array(v,"v",plot_number);
                }
            }
        }

        /* Forcing in the momentum equations */
        void forcing(double t, const DTArray & u, DTArray & u_f,
                const DTArray & v, DTArray & v_f, const DTArray & w, DTArray & w_f,
                vector<DTArray *> & tracers, vector<DTArray *> & tracers_f) {
            u_f = 0;
            v_f = 0;
            w_f = 0;
        }

        /* Basic analysis: compute secondary variables, and save fields and diagnostics */
        void analysis(double time, DTArray & u, DTArray & v, DTArray & w,
                vector<DTArray *> & tracers, DTArray & pressure) {
            // Set-up
            if ( iter == 0 ) {
                if ( compute_enstrophy or compute_dissipation or
                        compute_stresses_top or compute_stresses_bottom ) {
                    temp1 = alloc_array(Nx,Ny,Nz);
                }
                if ( compute_stresses_top or compute_stresses_bottom ) {
                    // initialize the vector of the bottom slope (Hprime)
                    Hprime = alloc_array(Nx,Ny,1);
                    *Hprime = 0*ii + 0*jj;
                }
                // Determine last plot if restarting from the dump file
                if (restart_from_dump) {
                    next_plot = (restart_sequence+1)*plot_interval;
                }
                // initialize the size of each voxel
                dxdydz = alloc_array(Nx,Ny,Nz);
                *dxdydz = (*get_quad_x())(ii)*(*get_quad_y())(jj)*(*get_quad_z())(kk);
            }
            // update clocks
            if (master()) {
                clock_time = MPI_Wtime();
                comp_duration = clock_time - compute_start_time;
            }

            /* Calculate and write out useful information */

            // Energy (PE assumes density is density anomaly)
            double ke_x = 0, ke_y = 0, ke_z = 0;
            if ( Nx > 1 ) {
                ke_x = pssum(sum(0.5*rho_0*(u*u)*(*dxdydz)));
            }
            if ( Ny > 1 ) {
                ke_y = pssum(sum(0.5*rho_0*(v*v)*(*dxdydz)));
            }
            if ( Nz > 1 ) {
                ke_z = pssum(sum(0.5*rho_0*(w*w)*(*dxdydz)));
            }
            double pe_tot;
            pe_tot = 0;
            double BPE_tot = 0;
            // Conversion from internal energy to background potential energy
            double phi_i = 0;
            // viscous dissipation
            double diss_tot = 0;
            double max_diss = 0;
            if (compute_dissipation) {
                dissipation(*temp1, u, v, w, gradient_op, grid_type, Nx, Ny, Nz, mu);
                max_diss = psmax(max(*temp1));
                diss_tot = pssum(sum((*temp1)*(*dxdydz)));
            }
            // Vorticity / Enstrophy
            double max_vort_x = 0, enst_x_tot = 0;
            double max_vort_y = 0, enst_y_tot = 0;
            double max_vort_z = 0, enst_z_tot = 0;
            if (compute_enstrophy) {
                // x-vorticity
                if (Ny > 1 and Nz > 1) {
                    compute_vort_x(*temp1, v, w, gradient_op, grid_type);
                    max_vort_x = psmax(max(abs(*temp1)));
                    enst_x_tot = pssum(sum(0.5*pow(*temp1,2)*(*dxdydz)));
                }
                // y-vorticity
                if (Nx > 1 and Nz > 1) {
                    compute_vort_y(*temp1, u, w, gradient_op, grid_type);
                    max_vort_y = psmax(max(abs(*temp1)));
                    enst_y_tot = pssum(sum(0.5*pow(*temp1,2)*(*dxdydz)));
                }
                // z-vorticity
                if (Nx > 1 and Ny > 1) {
                    compute_vort_z(*temp1, u, v, gradient_op, grid_type);
                    max_vort_z = psmax(max(abs(*temp1)));
                    enst_z_tot = pssum(sum(0.5*pow(*temp1,2)*(*dxdydz)));
                }
            }
            // max of fields
            double max_u = psmax(max(abs(u)));
            double max_v = psmax(max(abs(v)));
            double max_w = psmax(max(abs(w)));
            double max_vel = psmax(max(sqrt(u*u + v*v + w*w)));

            if (master()) {
                // add diagnostics to buffers
                string header, line;
                add_diagnostic("Iter", iter,            header, line);
                add_diagnostic("Clock_time", comp_duration, header, line);
                add_diagnostic("Time", time,            header, line);
                add_diagnostic("Max_vel", max_vel,      header, line);
                add_diagnostic("PE_tot", pe_tot,        header, line);
                if (compute_BPE) {
                    add_diagnostic("BPE_tot", BPE_tot,  header, line);
                }
                if (compute_internal_to_BPE) {
                    add_diagnostic("BPE_from_int", phi_i,   header, line);
                }
                if (compute_dissipation) {
                    add_diagnostic("Max_diss", max_diss,    header, line);
                    add_diagnostic("Diss_tot", diss_tot,    header, line);
                }
                if (Nx > 1) {
                    add_diagnostic("Max_u", max_u,  header, line);
                    add_diagnostic("KE_x", ke_x,    header, line);
                }
                if (Ny > 1) {
                    add_diagnostic("Max_v", max_v,  header, line);
                    add_diagnostic("KE_y", ke_y,    header, line);
                }
                if (Nz > 1) {
                    add_diagnostic("Max_w", max_w,  header, line);
                    add_diagnostic("KE_z", ke_z,    header, line);
                }
                if (Ny > 1 && Nz > 1 && compute_enstrophy) {
                    add_diagnostic("Enst_x_tot", enst_x_tot, header, line);
                    add_diagnostic("Max_vort_x", max_vort_x, header, line);
                }
                if (Nx > 1 && Nz > 1 && compute_enstrophy) {
                    add_diagnostic("Enst_y_tot", enst_y_tot, header, line);
                    add_diagnostic("Max_vort_y", max_vort_y, header, line);
                }
                if (Nx > 1 && Ny > 1 && compute_enstrophy) {
                    add_diagnostic("Enst_z_tot", enst_z_tot, header, line);
                    add_diagnostic("Max_vort_z", max_vort_z, header, line);
                }

                // Write to file
                if (!(restarting and (iter==0)))
                    write_diagnostics(header, line, iter, restarting);
                // and to the log file
                fprintf(stdout,"[%d] (%.4g) %.4f: "
                        "%.4g %.4g %.4g\n",
                        iter,comp_duration,time,
                        max_u,max_v,max_w);
            }

            // Top Surface Stresses
            if ( compute_stresses_top ) {
                stresses_top(u, v, w, *Hprime, *temp1, gradient_op, grid_type, mu, time, iter, restarting);
            }
            // Bottom Surface Stresses
            if ( compute_stresses_bottom ) {
                stresses_bottom(u, v, w, *Hprime, *temp1, gradient_op, grid_type, mu, time, iter, restarting);
            }

            /* Write to disk if at correct time */
            if ((time - next_plot) > -1e-6) {
                plot_number++;
                comp_duration = MPI_Wtime(); // time just before write (for dump)
                // Write the arrays
                write_array(u,"u",plot_number);
                write_array(w,"w",plot_number);
                if (Ny > 1)
                    write_array(v,"v",plot_number);
                if (write_pressure)
                    write_array(pressure,"p",plot_number);
                // update next plot time
                next_plot = next_plot + plot_interval;

                // Find average time to write (for dump)
                clock_time = MPI_Wtime(); // time just after write
                avg_write_time = (avg_write_time*(plot_number-restart_sequence-1) 
                        + (clock_time - comp_duration))/(plot_number-restart_sequence);
                // Print information about plot outputs
                write_plot_times(time, clock_time, comp_duration, avg_write_time, plot_number, restarting);
            }

            // see if close to end of compute time and dump
            check_and_dump(clock_time, real_start_time, compute_time, time, avg_write_time,
                    plot_number, u, v, w, tracers);
            // Change dump log file if successfully reached final time
            successful_dump(plot_number, final_time, plot_interval);
            // increase counter
            iter++;
        }

        // User specified variables to dump
        void write_variables(DTArray & u,DTArray & v, DTArray & w,
                vector<DTArray *> & tracers) {
            write_array(u,"u.dump");
            write_array(v,"v.dump");
            write_array(w,"w.dump");
        }

        // Constructor: Initialize local variables
        userControl():
            xx(split_range(Nx)), yy(Ny), zz(Nz),
            gradient_op(0),
            plot_number(restart_sequence),
            next_plot(initial_time + plot_interval)
    {   compute_quadweights(
            size_x(),   size_y(),   size_z(),
            length_x(), length_y(), length_z(),
            type_x(),   type_y(),   type_z());
        // Create one-dimensional arrays for the coordinates
        automatic_grid(MinX, MinY, MinZ, &xx, &yy, &zz);
    }
};

/* The ''main'' routine */
int main(int argc, char ** argv) {
    /* Initialize MPI.  This is required even for single-processor runs,
       since the inner routines assume some degree of parallelization,
       even if it is trivial. */
    MPI_Init(&argc, &argv);

    real_start_time = MPI_Wtime();     // start of simulation (for dump)
    /* ------------------ Define parameters from spins.conf --------------------- */
    options_init();

    option_category("Grid Options");
    add_option("Lx",&Lx,"Length of tank");
    add_option("Ly",&Ly,1.0,"Width of tank");
    add_option("Lz",&Lz,"Height of tank");
    add_option("Nx",&Nx,"Number of points in X");
    add_option("Ny",&Ny,1,"Number of points in Y");
    add_option("Nz",&Nz,"Number of points in Z");
    add_option("min_x",&MinX,0.0,"Minimum X-value");
    add_option("min_y",&MinY,0.0,"Minimum Y-value");
    add_option("min_z",&MinZ,0.0,"Minimum Z-value");

    option_category("Grid expansion options");
    string xgrid_type, ygrid_type, zgrid_type;
    add_option("type_x",&xgrid_type,
            "Grid type in X.  Valid values are:\n"
            "   FOURIER: Periodic\n"
            "   FREE_SLIP: Cosine expansion\n"
            "   NO_SLIP: Chebyhsev expansion");
    add_option("type_y",&ygrid_type,"FOURIER","Grid type in Y");
    add_option("type_z",&zgrid_type,"Grid type in Z");

    option_category("Physical parameters");
    add_option("rho_0",&rho_0,1000.0,"Reference density");
    add_option("visco",&visco,"Viscosity");

    option_category("Problem parameters");
    add_option("U0",&U0,"Magnitude of vortex");
    add_option("X1",&X1,"X-position of dipole 1");
    add_option("Z1",&Z1,"Z-position of dipole 1");
    add_option("X2",&X2,"X-position of dipole 2");
    add_option("Z2",&Z2,"Z-position of dipole 2");
    add_option("r0",&r0,"Radius of each vortex");

    option_category("Temporal options");
    add_option("final_time",&final_time,"Final time");
    add_option("plot_interval",&plot_interval,"Time between writes");
    add_option("dt_max",&dt_max,0.0,"Maximum time step. Zero value results in the default");

    option_category("Restart options");
    add_option("restart",&restarting,false,"Restart from prior output time.");
    add_option("restart_time",&initial_time,0.0,"Time to restart from");
    add_option("restart_sequence",&restart_sequence,-1,"Sequence number to restart from");

    option_category("Dumping options");
    add_option("restart_from_dump",&restart_from_dump,false,"If restart from dump");
    add_option("compute_time",&compute_time,-1.0,"Time permitted for computation");

    option_category("Other options");
    add_option("perturb",&perturb,"Initial perturbation in velocity");
    add_option("compute_enstrophy",&compute_enstrophy,true,"Calculate enstrophy?");
    add_option("compute_dissipation",&compute_dissipation,true,"Calculate dissipation?");
    add_option("compute_BPE",&compute_BPE,true,"Calculate BPE?");
    add_option("compute_internal_to_BPE",&compute_internal_to_BPE,true,
            "Calculate BPE gained from internal energy?");
    add_option("compute_stresses_top",&compute_stresses_top,false,"Calculate top surfaces stresses?");
    add_option("compute_stresses_bottom",&compute_stresses_bottom,false,"Calculate bottom surfaces stresses?");
    add_option("write_pressure",&write_pressure,false,"Write the pressure field?");

    option_category("Filter options");
    add_option("f_cutoff",&f_cutoff,0.6,"Filter cut-off frequency");
    add_option("f_order",&f_order,2.0,"Filter order");
    add_option("f_strength",&f_strength,20.0,"Filter strength");

    // Parse the options from the command line and config file
    options_parse(argc,argv);

    /* ------------------ Adjust and check parameters --------------------- */
    /* Now, make sense of the options received.  Many of these
     * can be directly used, but the ones of string-type need further procesing. */

    // adjust temporal values when restarting from dump
    if (restart_from_dump) {
        adjust_for_dump(restarting, initial_time, restart_sequence,
                final_time, compute_time, avg_write_time, Num_tracers, Nx, Ny, Nz);
    }

    // check restart sequence
    check_restart_sequence(restarting, restart_sequence, initial_time, plot_interval);

    // parse expansion types
    parse_boundary_conditions(xgrid_type, ygrid_type, zgrid_type, intype_x, intype_y, intype_z);
    // vector of expansion types
    grid_type[0] = xgrid_type;
    grid_type[1] = ygrid_type;
    grid_type[2] = zgrid_type;

    // adjust Ly for 2D
    if (Ny==1 and Ly!=1.0) {
        Ly = 1.0;
        if (master())
            fprintf(stdout,"Simulation is 2 dimensional, "
                    "Ly has been changed to 1.0 for normalization.\n");
    }

    /* ------------------ Derived parameters --------------------- */

    // Dynamic viscosity
    mu = visco*rho_0;
    // Maximum time step
    if (dt_max == 0.0) {
        // if dt_max not given in spins.conf, use the buoyancy frequency
        dt_max = 0.01;
    }

    /* ------------------ Print some parameters --------------------- */

    if (master()) {
        fprintf(stdout,"Vortex dipole problem\n");
        fprintf(stdout,"Using a %f x %f x %f grid of %d x %d x %d points\n",Lx,Ly,Lz,Nx,Ny,Nz);
        fprintf(stdout,"rho_0 = %f\n",rho_0);
        fprintf(stdout,"Time between plots: %g s\n",plot_interval);
        fprintf(stdout,"Initial velocity perturbation: %g\n",perturb);
        fprintf(stdout,"Filter cutoff = %f, order = %f, strength = %f\n",f_cutoff,f_order,f_strength);
        fprintf(stdout,"Max time step: %g\n",dt_max);
    }

    /* ------------------ Do stuff --------------------- */

    // Create an instance of the above class
    userControl mycode;
    // Create a flow-evolver that takes its settings from the above class
    FluidEvolve<userControl> do_stuff(&mycode);
    // Initialize
    do_stuff.initialize();
    compute_start_time = MPI_Wtime(); // beginning of simulation (after reading in data)
    double startup_time = compute_start_time - real_start_time;
    if (master()) fprintf(stdout,"Start-up time: %.6g s.\n",startup_time);
    // Run until the end of time
    do_stuff.do_run(final_time);
    MPI_Finalize();
    return 0;
}