cachearray.cc 12.9 KB
Newer Older
Anirudh Mohan Kaushik's avatar
Anirudh Mohan Kaushik committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
/*****************************************************************************
 *                                McPAT
 *                      SOFTWARE LICENSE AGREEMENT
 *            Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
 *                          All Rights Reserved
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Joel Hestness
 *          Yasuko Eckert
 *
 ***************************************************************************/

#include <cmath>
#include <iostream>

#include "area.h"
#include "cachearray.h"
#include "common.h"
#include "decoder.h"
#include "parameter.h"

using namespace std;

double CacheArray::area_efficiency_threshold = 20.0;
int CacheArray::ed = 0;
//Fixed number, make sure timing can be satisfied.
int CacheArray::delay_wt = 100;
int CacheArray::cycle_time_wt = 1000;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::area_wt = 10;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::dynamic_power_wt = 10;
int CacheArray::leakage_power_wt = 10;
//Fixed number, make sure timing can be satisfied.
int CacheArray::delay_dev = 1000000;
int CacheArray::cycle_time_dev = 100;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::area_dev = 1000000;
//Fixed number, This is used to exhaustive search for individual components.
int CacheArray::dynamic_power_dev = 1000000;
int CacheArray::leakage_power_dev = 1000000;
int CacheArray::cycle_time_dev_threshold = 10;

CacheArray::CacheArray(XMLNode* _xml_data,
                 const InputParameter *configure_interface, string _name,
                 enum Device_ty device_ty_, double _clockRate,
                 bool opt_local_, enum Core_type core_ty_, bool _is_default)
        : McPATComponent(_xml_data), l_ip(*configure_interface),
        device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
        is_default(_is_default), sbt_dir_overhead(0) {
    name = _name;
    clockRate = _clockRate;
    if (l_ip.cache_sz < MIN_BUFFER_SIZE) {
        l_ip.cache_sz = MIN_BUFFER_SIZE;
    }

    if (!l_ip.error_checking(name)) {
        exit(1);
    }

    sbt_tdp_stats.reset();
    sbt_rtp_stats.reset();

    // Compute initial search point
    local_result.valid = false;
    compute_base_power();

    // Set up the cache by searching design space with cacti
    list<uca_org_t > candidate_solutions(0);
    list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
    uca_org_t* temp_res = NULL;
    double throughput = l_ip.throughput;
    double latency = l_ip.latency;
    bool throughput_overflow = true;
    bool latency_overflow = true;

    if ((local_result.cycle_time - throughput) <= 1e-10 )
        throughput_overflow = false;
    if ((local_result.access_time - latency) <= 1e-10)
        latency_overflow = false;

    if (opt_for_clk && opt_local) {
        if (throughput_overflow || latency_overflow) {
            l_ip.ed = ed;

            l_ip.delay_wt = delay_wt;
            l_ip.cycle_time_wt = cycle_time_wt;

            l_ip.area_wt = area_wt;
            l_ip.dynamic_power_wt = dynamic_power_wt;
            l_ip.leakage_power_wt = leakage_power_wt;

            l_ip.delay_dev = delay_dev;
            l_ip.cycle_time_dev = cycle_time_dev;

            l_ip.area_dev = area_dev;
            l_ip.dynamic_power_dev = dynamic_power_dev;
            l_ip.leakage_power_dev = leakage_power_dev;

            //Reset overflow flag before start optimization iterations
            throughput_overflow = true;
            latency_overflow = true;

            //Clean up the result for optimized for ED^2P
            temp_res = &local_result;
            temp_res->cleanup();
        }


        while ((throughput_overflow || latency_overflow) &&
               l_ip.cycle_time_dev > cycle_time_dev_threshold) {
            compute_base_power();

            //This is the time_dev to be used for next iteration
            l_ip.cycle_time_dev -= cycle_time_dev_threshold;

            //      from best area to worst area -->worst timing to best timing
            if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
                 (local_result.access_time - latency) <= 1e-10) ||
                (local_result.data_array2->area_efficiency <
                 area_efficiency_threshold && l_ip.assoc == 0)) {
                //if no satisfiable solution is found,the most aggressive one
                //is left
                candidate_solutions.push_back(local_result);
                if (((local_result.cycle_time - throughput) <= 1e-10) &&
                    ((local_result.access_time - latency) <= 1e-10)) {
                    //ensure stop opt not because of cam
                    throughput_overflow = false;
                    latency_overflow = false;
                }

            } else {
                if ((local_result.cycle_time - throughput) <= 1e-10)
                    throughput_overflow = false;
                if ((local_result.access_time - latency) <= 1e-10)
                    latency_overflow = false;

                //if not >10 local_result is the last result, it cannot be
                //cleaned up
                if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
                    //Only solutions not saved in the list need to be
                    //cleaned up
                    temp_res = &local_result;
                    temp_res->cleanup();
                }
            }
        }


        if (l_ip.assoc > 0) {
            //For array structures except CAM and FA, Give warning but still
            //provide a result with best timing found
            if (throughput_overflow == true)
                cout << "Warning: " << name
                     << " array structure cannot satisfy throughput constraint."
                     << endl;
            if (latency_overflow == true)
                cout << "Warning: " << name
                     << " array structure cannot satisfy latency constraint."
                     << endl;
        }

        double min_dynamic_energy = BIGNUM;
        if (candidate_solutions.empty() == false) {
            local_result.valid = true;
            for (candidate_iter = candidate_solutions.begin();
                 candidate_iter != candidate_solutions.end();
                 ++candidate_iter) {
                if (min_dynamic_energy >
                    (candidate_iter)->power.readOp.dynamic) {
                    min_dynamic_energy =
                        (candidate_iter)->power.readOp.dynamic;
                    min_dynamic_energy_iter = candidate_iter;
                    local_result = *(min_dynamic_energy_iter);

                } else {
                    candidate_iter->cleanup() ;
                }

            }


        }
        candidate_solutions.clear();
    }

    double long_channel_device_reduction =
        longer_channel_device_reduction(device_ty, core_ty);

    double macro_layout_overhead = g_tp.macro_layout_overhead;
    double chip_PR_overhead = g_tp.chip_layout_overhead;
    double total_overhead = macro_layout_overhead * chip_PR_overhead;
    local_result.area *= total_overhead;

    //maintain constant power density
    double pppm_t[4]    = {total_overhead, 1, 1, total_overhead};

    double sckRation = g_tp.sckt_co_eff;
    local_result.power.readOp.dynamic *= sckRation;
    local_result.power.writeOp.dynamic *= sckRation;
    local_result.power.searchOp.dynamic *= sckRation;
    local_result.power.readOp.leakage *= l_ip.nbanks;
    local_result.power.readOp.longer_channel_leakage =
        local_result.power.readOp.leakage * long_channel_device_reduction;
    local_result.power = local_result.power * pppm_t;

    local_result.data_array2->power.readOp.dynamic *= sckRation;
    local_result.data_array2->power.writeOp.dynamic *= sckRation;
    local_result.data_array2->power.searchOp.dynamic *= sckRation;
    local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
    local_result.data_array2->power.readOp.longer_channel_leakage =
        local_result.data_array2->power.readOp.leakage *
        long_channel_device_reduction;
    local_result.data_array2->power = local_result.data_array2->power * pppm_t;


    if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
        local_result.tag_array2->power.readOp.dynamic *= sckRation;
        local_result.tag_array2->power.writeOp.dynamic *= sckRation;
        local_result.tag_array2->power.searchOp.dynamic *= sckRation;
        local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
        local_result.tag_array2->power.readOp.longer_channel_leakage =
            local_result.tag_array2->power.readOp.leakage *
            long_channel_device_reduction;
        local_result.tag_array2->power =
            local_result.tag_array2->power * pppm_t;
    }
}

void CacheArray::compute_base_power() {
    local_result = cacti_interface(&l_ip);
}

void CacheArray::computeArea() {
    area.set_area(local_result.area);
    output_data.area = local_result.area / 1e6;
}

void CacheArray::computeEnergy() {
    // Set the leakage power numbers
    output_data.subthreshold_leakage_power = local_result.power.readOp.leakage;
    output_data.gate_leakage_power = local_result.power.readOp.gate_leakage;

    if (l_ip.assoc && l_ip.is_cache) {
        // This is a standard cache array with data and tags
        // Calculate peak dynamic power
        output_data.peak_dynamic_power =
            (local_result.tag_array2->power.readOp.dynamic +
             local_result.data_array2->power.readOp.dynamic) *
            tdp_stats.readAc.hit +
            (local_result.tag_array2->power.readOp.dynamic) *
            tdp_stats.readAc.miss +
            (local_result.tag_array2->power.readOp.dynamic +
             local_result.data_array2->power.writeOp.dynamic) *
            tdp_stats.writeAc.hit +
            (local_result.tag_array2->power.readOp.dynamic) *
            tdp_stats.writeAc.miss;
        output_data.peak_dynamic_power *= clockRate;

        // Calculate the runtime dynamic power
        output_data.runtime_dynamic_energy =
            local_result.data_array2->power.readOp.dynamic *
            rtp_stats.dataReadAc.access +
            local_result.data_array2->power.writeOp.dynamic *
            rtp_stats.dataWriteAc.access +
            (local_result.tag_array2->power.readOp.dynamic *
             rtp_stats.tagReadAc.access +
             local_result.tag_array2->power.writeOp.dynamic *
             rtp_stats.tagWriteAc.access) * l_ip.assoc;
    } else {
        // Calculate peak dynamic power
        output_data.peak_dynamic_power =
                local_result.power.readOp.dynamic * tdp_stats.readAc.access +
                local_result.power.writeOp.dynamic * tdp_stats.writeAc.access +
                local_result.power.searchOp.dynamic * tdp_stats.searchAc.access;
        output_data.peak_dynamic_power *= clockRate;

        // Calculate the runtime dynamic power
        output_data.runtime_dynamic_energy =
                local_result.power.readOp.dynamic * rtp_stats.readAc.access +
                local_result.power.writeOp.dynamic * rtp_stats.writeAc.access +
                local_result.power.searchOp.dynamic * rtp_stats.searchAc.access;
    }

    // An SBT directory has more dynamic power
    if (sbt_dir_overhead > 0) {
        // Calculate peak dynamic power
        output_data.peak_dynamic_power +=
            (computeSBTDynEnergy(&sbt_tdp_stats) * clockRate);

        // Calculate the runtime dynamic power
        output_data.runtime_dynamic_energy +=
            computeSBTDynEnergy(&sbt_rtp_stats);
    }
}

CacheArray::~CacheArray() {
    local_result.cleanup();
}