//--------------------------------------------------------------------------- // // File Name : fft.cpp // Description : FFT implementation // Release Date : 16/07/13 // Author : // // Revision History //--------------------------------------------------------------------------- // Date Version Author Description //--------------------------------------------------------------------------- // 1.0 R.Goswami,Synopsys, Inc. fft.cpp - This is the implementation file for the synchronous process "fft" // 16/07/03 1.1 PolyU DARC Lab //--------------------------------------------------------------------------- /***************************************************************************** The following code is derived, directly or indirectly, from the SystemC source code Copyright (c) 1996-2006 by all Contributors. All Rights reserved. The contents of this file are subject to the restrictions and limitations set forth in the SystemC Open Source License Version 2.4 (the "License"); You may not use this file except in compliance with such restrictions and limitations. You may obtain instructions on how to receive a copy of the License at http://www.systemc.org/. Software distributed by Contributors under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. *****************************************************************************/ #include "fft.h" void fft::entry() { // Variables declaration float sample[16][2]; // Note: Float is not synthesizable unsigned int index; // Reset state -- should be executable in a single clock cycle for (unsigned int i = 0; i < 16; i++) { for(unsigned h=0; h <2; h++){ sample[i][h] = 0; } } index = 0; wait(); // Main computational loop while(true) { data_req.write(false); data_ready.write(false); index = 0; //Reading in the Samples while( index < 16 ) { data_req.write(true); do { wait(); } while (data_valid.read() == true); sample[index][0] = in_real.read(); sample[index][1] = in_imag.read(); index++; // cout << endl << "Index " << index; data_req.write(false); wait(); } index = 0; ////////////////////////////////////////////////////////////////////////// /// Computation - 1D Complex DFT In-Place DIF Computation Algorithm //// ////////////////////////////////////////////////////////////////////////// //Size of FFT, N = 2**M unsigned int N, M, len ; float theta; // Note: float is non-synthesizble as indicated in the SystemC synthesizable subset draft 1.3 float W[7][2], w_real, w_imag, w_rec_real, w_rec_imag, w_temp; //Initialize M = 4; N = 16; len = N/2; theta = 8*atan(1.0)/N; // cout << "Computing..." << endl; //Calculate the W-values recursively w_real = cos(theta); w_imag = -sin(theta); w_rec_real = 1; w_rec_imag = 0; index = 0; while(index < len-1) { w_temp = w_rec_real*w_real - w_rec_imag*w_imag; w_rec_imag = w_rec_real*w_imag + w_rec_imag*w_real; w_rec_real = w_temp; W[index][0] = w_rec_real; W[index][1] = w_rec_imag; index++; } float tmp_real, tmp_imag, tmp_real2, tmp_imag2; unsigned int stage, i, j,index2, windex, incr; //Begin Computation stage = 0; len = N; incr = 1; while (stage < M) { len = len/2; //First Iteration : With No Multiplies i = 0; while(i < N) { index = i; index2 = index + len; tmp_real = sample[index][0] + sample[index2][0]; tmp_imag = sample[index][1] + sample[index2][1]; sample[index2][0] = sample[index][0] - sample[index2][0]; sample[index2][1] = sample[index][1] - sample[index2][1]; sample[index][0] = tmp_real; sample[index][1] = tmp_imag; i = i + 2*len; } //Remaining Iterations: Use Stored W j = 1; windex = incr - 1; while (j < len) // This loop executes N/2 times at first stage, .. once at last stage. { i = j; while (i < N) { index = i; index2 = index + len; tmp_real = sample[index][0] + sample[index2][0]; tmp_imag = sample[index][1] + sample[index2][1]; tmp_real2 = sample[index][0] - sample[index2][0]; tmp_imag2 = sample[index][1] - sample[index2][1]; sample[index2][0] = tmp_real2*W[windex][0] - tmp_imag2*W[windex][1]; sample[index2][1] = tmp_real2*W[windex][1] + tmp_imag2*W[windex][0]; sample[index][0] = tmp_real; sample[index][1] = tmp_imag; i = i + 2*len; } windex = windex + incr; j++; } stage++; incr = 2*incr; } ////////////////////////////////////////////////////////////////////////// //Writing out the normalized transform values in bit reversed order sc_uint<4> bits_i; sc_uint<4> bits_index; bits_i = 0; i = 0; // cout << "Writing the transform values..." << endl; while( i < 16) { bits_i = i; bits_index[3]= bits_i[0]; bits_index[2]= bits_i[1]; bits_index[1]= bits_i[2]; bits_index[0]= bits_i[3]; index = bits_index; out_real.write(sample[index][0]); out_imag.write(sample[index][1]); data_ready.write(true); do { wait(); } while ( !(data_ack.read() == true) ); data_ready.write(false); i++; wait(); } index = 0; // cout << "Done..." << endl; } }