diff --git a/nuplan/planning/simulation/observation/ml_planner_agents.py b/nuplan/planning/simulation/observation/ml_planner_agents.py index 8da67f7f614ff95bfc7193b6c41de147ffd97c88..3ebcc4e6702469e156f7493418891fce094e56c8 100644 --- a/nuplan/planning/simulation/observation/ml_planner_agents.py +++ b/nuplan/planning/simulation/observation/ml_planner_agents.py @@ -45,8 +45,7 @@ class MLPlannerAgents(AbstractObservation): self._agents: Dict = None self._trajectory_cache: Dict = {} self._inference_frequency: float = 0.2 - self._relevance_distance: float = 30 - self._cull_distance: float = 400 + self._full_inference_distance: float = 30 self._agent_presence_threshold: float = 10 def reset(self) -> None: @@ -138,7 +137,7 @@ class MLPlannerAgents(AbstractObservation): if agent_token in self._trajectory_cache and \ (next_iteration.time_s - self._trajectory_cache[agent_token][0]) < self._inference_frequency and \ (((agent_data['ego_state'].center.x - history.current_state[0].center.x) ** 2 + \ - (agent_data['ego_state'].center.y - history.current_state[0].center.y) ** 2) ** 0.5) >= self._relevance_distance: + (agent_data['ego_state'].center.y - history.current_state[0].center.y) ** 2) ** 0.5) >= self._full_inference_distance: trajectory = self._trajectory_cache[agent_token][1] else: history_input = self._build_history_input(agent_token, agent_data['ego_state'], history)