diff --git a/nuplan/planning/simulation/observation/ml_planner_agents.py b/nuplan/planning/simulation/observation/ml_planner_agents.py index e7d37df9bb70b91e1a311dfd861e646ca6a7f1d5..79354eb7dd24f452c4fdc229c6e58753b62bada7 100644 --- a/nuplan/planning/simulation/observation/ml_planner_agents.py +++ b/nuplan/planning/simulation/observation/ml_planner_agents.py @@ -197,7 +197,7 @@ class MLPlannerAgents(AbstractObservation): history_input = self._build_history_input(agent_token, agent_data['ego_state'], history) if agent_data['occlusion'] is not None: - planner_input = agent_data['occlusion'].occlude_input(history_input) + history_input = agent_data['occlusion'].occlude_input(history_input) planner_input = PlannerInput(iteration=iteration, history=history_input, traffic_light_data=traffic_light_data) trajectory = agent_data['planner'].compute_trajectory(planner_input) @@ -292,9 +292,9 @@ class MLPlannerAgents(AbstractObservation): # Convert agent state to a corresponding "ego state" object, or pull it from cache if already computed. if matched_agent is None: faux_ego_observation = deepcopy(current_state) - faux_ego_observation._time_point = ego_state.time_point + faux_ego_observation._time_point = deepcopy(ego_state.time_point) else: - faux_ego_observation = self._build_ego_state_from_agent(matched_agent, ego_state.time_point) + faux_ego_observation = self._build_ego_state_from_agent(matched_agent, deepcopy(ego_state.time_point)) # Rebuild timestep and buffer - creating a new observations object with old ego appended.