diff --git a/experiments/test_notebook.ipynb b/experiments/test_notebook.ipynb index bac465598e8943cf46f8651c520ecc9a6c7ebd46..1b9515f3202b1b6028f65ae6c4b7b2026653999d 100644 --- a/experiments/test_notebook.ipynb +++ b/experiments/test_notebook.ipynb @@ -26,7 +26,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_2455/4095267831.py:5: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n", + "/tmp/ipykernel_8229/4095267831.py:5: DeprecationWarning: Importing display from IPython.core.display is deprecated since IPython 7.14, please import from IPython display\n", " from IPython.core.display import display, HTML\n" ] } @@ -60,287 +60,8 @@ }, { "data": { - "application/javascript": [ - "(function(root) {\n", - " function now() {\n", - " return new Date();\n", - " }\n", - "\n", - " const force = true;\n", - "\n", - " if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n", - " root._bokeh_onload_callbacks = [];\n", - " root._bokeh_is_loading = undefined;\n", - " }\n", - "\n", - "const JS_MIME_TYPE = 'application/javascript';\n", - " const HTML_MIME_TYPE = 'text/html';\n", - " const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n", - " const CLASS_NAME = 'output_bokeh rendered_html';\n", - "\n", - " /**\n", - " * Render data to the DOM node\n", - " */\n", - " function render(props, node) {\n", - " const script = document.createElement(\"script\");\n", - " node.appendChild(script);\n", - " }\n", - "\n", - " /**\n", - " * Handle when an output is cleared or removed\n", - " */\n", - " function handleClearOutput(event, handle) {\n", - " const cell = handle.cell;\n", - "\n", - " const id = cell.output_area._bokeh_element_id;\n", - " const server_id = cell.output_area._bokeh_server_id;\n", - " // Clean up Bokeh references\n", - " if (id != null && id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", - " }\n", - "\n", - " if (server_id !== undefined) {\n", - " // Clean up Bokeh references\n", - " const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n", - " cell.notebook.kernel.execute(cmd_clean, {\n", - " iopub: {\n", - " output: function(msg) {\n", - " const id = msg.content.text.trim();\n", - " if (id in Bokeh.index) {\n", - " Bokeh.index[id].model.document.clear();\n", - " delete Bokeh.index[id];\n", - " }\n", - " }\n", - " }\n", - " });\n", - " // Destroy server and session\n", - " const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n", - " cell.notebook.kernel.execute(cmd_destroy);\n", - " }\n", - " }\n", - "\n", - " /**\n", - " * Handle when a new output is added\n", - " */\n", - " function handleAddOutput(event, handle) {\n", - " const output_area = handle.output_area;\n", - " const output = handle.output;\n", - "\n", - " // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n", - " if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n", - " return\n", - " }\n", - "\n", - " const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n", - "\n", - " if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n", - " toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n", - " // store reference to embed id on output_area\n", - " output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n", - " }\n", - " if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n", - " const bk_div = document.createElement(\"div\");\n", - " bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n", - " const script_attrs = bk_div.children[0].attributes;\n", - " for (let i = 0; i < script_attrs.length; i++) {\n", - " toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n", - " toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n", - " }\n", - " // store reference to server id on output_area\n", - " output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n", - " }\n", - " }\n", - "\n", - " function register_renderer(events, OutputArea) {\n", - "\n", - " function append_mime(data, metadata, element) {\n", - " // create a DOM node to render to\n", - " const toinsert = this.create_output_subarea(\n", - " metadata,\n", - " CLASS_NAME,\n", - " EXEC_MIME_TYPE\n", - " );\n", - " this.keyboard_manager.register_events(toinsert);\n", - " // Render to node\n", - " const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n", - " render(props, toinsert[toinsert.length - 1]);\n", - " element.append(toinsert);\n", - " return toinsert\n", - " }\n", - "\n", - " /* Handle when an output is cleared or removed */\n", - " events.on('clear_output.CodeCell', handleClearOutput);\n", - " events.on('delete.Cell', handleClearOutput);\n", - "\n", - " /* Handle when a new output is added */\n", - " events.on('output_added.OutputArea', handleAddOutput);\n", - "\n", - " /**\n", - " * Register the mime type and append_mime function with output_area\n", - " */\n", - " OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n", - " /* Is output safe? */\n", - " safe: true,\n", - " /* Index of renderer in `output_area.display_order` */\n", - " index: 0\n", - " });\n", - " }\n", - "\n", - " // register the mime type if in Jupyter Notebook environment and previously unregistered\n", - " if (root.Jupyter !== undefined) {\n", - " const events = require('base/js/events');\n", - " const OutputArea = require('notebook/js/outputarea').OutputArea;\n", - "\n", - " if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n", - " register_renderer(events, OutputArea);\n", - " }\n", - " }\n", - " if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n", - " root._bokeh_timeout = Date.now() + 5000;\n", - " root._bokeh_failed_load = false;\n", - " }\n", - "\n", - " const NB_LOAD_WARNING = {'data': {'text/html':\n", - " \"<div style='background-color: #fdd'>\\n\"+\n", - " \"<p>\\n\"+\n", - " \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n", - " \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n", - " \"</p>\\n\"+\n", - " \"<ul>\\n\"+\n", - " \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n", - " \"<li>use INLINE resources instead, as so:</li>\\n\"+\n", - " \"</ul>\\n\"+\n", - " \"<code>\\n\"+\n", - " \"from bokeh.resources import INLINE\\n\"+\n", - " \"output_notebook(resources=INLINE)\\n\"+\n", - " \"</code>\\n\"+\n", - " \"</div>\"}};\n", - "\n", - " function display_loaded() {\n", - " const el = document.getElementById(\"1001\");\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS is loading...\";\n", - " }\n", - " if (root.Bokeh !== undefined) {\n", - " if (el != null) {\n", - " el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n", - " }\n", - " } else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(display_loaded, 100)\n", - " }\n", - " }\n", - "\n", - " function run_callbacks() {\n", - " try {\n", - " root._bokeh_onload_callbacks.forEach(function(callback) {\n", - " if (callback != null)\n", - " callback();\n", - " });\n", - " } finally {\n", - " delete root._bokeh_onload_callbacks\n", - " }\n", - " console.debug(\"Bokeh: all callbacks have finished\");\n", - " }\n", - "\n", - " function load_libs(css_urls, js_urls, callback) {\n", - " if (css_urls == null) css_urls = [];\n", - " if (js_urls == null) js_urls = [];\n", - "\n", - " root._bokeh_onload_callbacks.push(callback);\n", - " if (root._bokeh_is_loading > 0) {\n", - " console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n", - " return null;\n", - " }\n", - " if (js_urls == null || js_urls.length === 0) {\n", - " run_callbacks();\n", - " return null;\n", - " }\n", - " console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n", - " root._bokeh_is_loading = css_urls.length + js_urls.length;\n", - "\n", - " function on_load() {\n", - " root._bokeh_is_loading--;\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n", - " run_callbacks()\n", - " }\n", - " }\n", - "\n", - " function on_error(url) {\n", - " console.error(\"failed to load \" + url);\n", - " }\n", - "\n", - " for (let i = 0; i < css_urls.length; i++) {\n", - " const url = css_urls[i];\n", - " const element = document.createElement(\"link\");\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.rel = \"stylesheet\";\n", - " element.type = \"text/css\";\n", - " element.href = url;\n", - " console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " for (let i = 0; i < js_urls.length; i++) {\n", - " const url = js_urls[i];\n", - " const element = document.createElement('script');\n", - " element.onload = on_load;\n", - " element.onerror = on_error.bind(null, url);\n", - " element.async = false;\n", - " element.src = url;\n", - " console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n", - " document.head.appendChild(element);\n", - " }\n", - " };\n", - "\n", - " function inject_raw_css(css) {\n", - " const element = document.createElement(\"style\");\n", - " element.appendChild(document.createTextNode(css));\n", - " document.body.appendChild(element);\n", - " }\n", - "\n", - " const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n", - " const css_urls = [];\n", - "\n", - " const inline_js = [ function(Bokeh) {\n", - " Bokeh.set_log_level(\"info\");\n", - " },\n", - "function(Bokeh) {\n", - " }\n", - " ];\n", - "\n", - " function run_inline_js() {\n", - " if (root.Bokeh !== undefined || force === true) {\n", - " for (let i = 0; i < inline_js.length; i++) {\n", - " inline_js[i].call(root, root.Bokeh);\n", - " }\n", - "if (force === true) {\n", - " display_loaded();\n", - " }} else if (Date.now() < root._bokeh_timeout) {\n", - " setTimeout(run_inline_js, 100);\n", - " } else if (!root._bokeh_failed_load) {\n", - " console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n", - " root._bokeh_failed_load = true;\n", - " } else if (force !== true) {\n", - " const cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n", - " cell.output_area.append_execute_result(NB_LOAD_WARNING)\n", - " }\n", - " }\n", - "\n", - " if (root._bokeh_is_loading === 0) {\n", - " console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n", - " run_inline_js();\n", - " } else {\n", - " load_libs(css_urls, js_urls, function() {\n", - " console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n", - " run_inline_js();\n", - " });\n", - " }\n", - "}(window));" - ], - "application/vnd.bokehjs_load.v0+json": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\n\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));" + "application/javascript": "(function(root) {\n function now() {\n return new Date();\n }\n\n const force = true;\n\n if (typeof root._bokeh_onload_callbacks === \"undefined\" || force === true) {\n root._bokeh_onload_callbacks = [];\n root._bokeh_is_loading = undefined;\n }\n\nconst JS_MIME_TYPE = 'application/javascript';\n const HTML_MIME_TYPE = 'text/html';\n const EXEC_MIME_TYPE = 'application/vnd.bokehjs_exec.v0+json';\n const CLASS_NAME = 'output_bokeh rendered_html';\n\n /**\n * Render data to the DOM node\n */\n function render(props, node) {\n const script = document.createElement(\"script\");\n node.appendChild(script);\n }\n\n /**\n * Handle when an output is cleared or removed\n */\n function handleClearOutput(event, handle) {\n const cell = handle.cell;\n\n const id = cell.output_area._bokeh_element_id;\n const server_id = cell.output_area._bokeh_server_id;\n // Clean up Bokeh references\n if (id != null && id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n\n if (server_id !== undefined) {\n // Clean up Bokeh references\n const cmd_clean = \"from bokeh.io.state import curstate; print(curstate().uuid_to_server['\" + server_id + \"'].get_sessions()[0].document.roots[0]._id)\";\n cell.notebook.kernel.execute(cmd_clean, {\n iopub: {\n output: function(msg) {\n const id = msg.content.text.trim();\n if (id in Bokeh.index) {\n Bokeh.index[id].model.document.clear();\n delete Bokeh.index[id];\n }\n }\n }\n });\n // Destroy server and session\n const cmd_destroy = \"import bokeh.io.notebook as ion; ion.destroy_server('\" + server_id + \"')\";\n cell.notebook.kernel.execute(cmd_destroy);\n }\n }\n\n /**\n * Handle when a new output is added\n */\n function handleAddOutput(event, handle) {\n const output_area = handle.output_area;\n const output = handle.output;\n\n // limit handleAddOutput to display_data with EXEC_MIME_TYPE content only\n if ((output.output_type != \"display_data\") || (!Object.prototype.hasOwnProperty.call(output.data, EXEC_MIME_TYPE))) {\n return\n }\n\n const toinsert = output_area.element.find(\".\" + CLASS_NAME.split(' ')[0]);\n\n if (output.metadata[EXEC_MIME_TYPE][\"id\"] !== undefined) {\n toinsert[toinsert.length - 1].firstChild.textContent = output.data[JS_MIME_TYPE];\n // store reference to embed id on output_area\n output_area._bokeh_element_id = output.metadata[EXEC_MIME_TYPE][\"id\"];\n }\n if (output.metadata[EXEC_MIME_TYPE][\"server_id\"] !== undefined) {\n const bk_div = document.createElement(\"div\");\n bk_div.innerHTML = output.data[HTML_MIME_TYPE];\n const script_attrs = bk_div.children[0].attributes;\n for (let i = 0; i < script_attrs.length; i++) {\n toinsert[toinsert.length - 1].firstChild.setAttribute(script_attrs[i].name, script_attrs[i].value);\n toinsert[toinsert.length - 1].firstChild.textContent = bk_div.children[0].textContent\n }\n // store reference to server id on output_area\n output_area._bokeh_server_id = output.metadata[EXEC_MIME_TYPE][\"server_id\"];\n }\n }\n\n function register_renderer(events, OutputArea) {\n\n function append_mime(data, metadata, element) {\n // create a DOM node to render to\n const toinsert = this.create_output_subarea(\n metadata,\n CLASS_NAME,\n EXEC_MIME_TYPE\n );\n this.keyboard_manager.register_events(toinsert);\n // Render to node\n const props = {data: data, metadata: metadata[EXEC_MIME_TYPE]};\n render(props, toinsert[toinsert.length - 1]);\n element.append(toinsert);\n return toinsert\n }\n\n /* Handle when an output is cleared or removed */\n events.on('clear_output.CodeCell', handleClearOutput);\n events.on('delete.Cell', handleClearOutput);\n\n /* Handle when a new output is added */\n events.on('output_added.OutputArea', handleAddOutput);\n\n /**\n * Register the mime type and append_mime function with output_area\n */\n OutputArea.prototype.register_mime_type(EXEC_MIME_TYPE, append_mime, {\n /* Is output safe? */\n safe: true,\n /* Index of renderer in `output_area.display_order` */\n index: 0\n });\n }\n\n // register the mime type if in Jupyter Notebook environment and previously unregistered\n if (root.Jupyter !== undefined) {\n const events = require('base/js/events');\n const OutputArea = require('notebook/js/outputarea').OutputArea;\n\n if (OutputArea.prototype.mime_types().indexOf(EXEC_MIME_TYPE) == -1) {\n register_renderer(events, OutputArea);\n }\n }\n if (typeof (root._bokeh_timeout) === \"undefined\" || force === true) {\n root._bokeh_timeout = Date.now() + 5000;\n root._bokeh_failed_load = false;\n }\n\n const NB_LOAD_WARNING = {'data': {'text/html':\n \"<div style='background-color: #fdd'>\\n\"+\n \"<p>\\n\"+\n \"BokehJS does not appear to have successfully loaded. If loading BokehJS from CDN, this \\n\"+\n \"may be due to a slow or bad network connection. Possible fixes:\\n\"+\n \"</p>\\n\"+\n \"<ul>\\n\"+\n \"<li>re-rerun `output_notebook()` to attempt to load from CDN again, or</li>\\n\"+\n \"<li>use INLINE resources instead, as so:</li>\\n\"+\n \"</ul>\\n\"+\n \"<code>\\n\"+\n \"from bokeh.resources import INLINE\\n\"+\n \"output_notebook(resources=INLINE)\\n\"+\n \"</code>\\n\"+\n \"</div>\"}};\n\n function display_loaded() {\n const el = document.getElementById(\"1001\");\n if (el != null) {\n el.textContent = \"BokehJS is loading...\";\n }\n if (root.Bokeh !== undefined) {\n if (el != null) {\n el.textContent = \"BokehJS \" + root.Bokeh.version + \" successfully loaded.\";\n }\n } else if (Date.now() < root._bokeh_timeout) {\n setTimeout(display_loaded, 100)\n }\n }\n\n function run_callbacks() {\n try {\n root._bokeh_onload_callbacks.forEach(function(callback) {\n if (callback != null)\n callback();\n });\n } finally {\n delete root._bokeh_onload_callbacks\n }\n console.debug(\"Bokeh: all callbacks have finished\");\n }\n\n function load_libs(css_urls, js_urls, callback) {\n if (css_urls == null) css_urls = [];\n if (js_urls == null) js_urls = [];\n\n root._bokeh_onload_callbacks.push(callback);\n if (root._bokeh_is_loading > 0) {\n console.debug(\"Bokeh: BokehJS is being loaded, scheduling callback at\", now());\n return null;\n }\n if (js_urls == null || js_urls.length === 0) {\n run_callbacks();\n return null;\n }\n console.debug(\"Bokeh: BokehJS not loaded, scheduling load and callback at\", now());\n root._bokeh_is_loading = css_urls.length + js_urls.length;\n\n function on_load() {\n root._bokeh_is_loading--;\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: all BokehJS libraries/stylesheets loaded\");\n run_callbacks()\n }\n }\n\n function on_error(url) {\n console.error(\"failed to load \" + url);\n }\n\n for (let i = 0; i < css_urls.length; i++) {\n const url = css_urls[i];\n const element = document.createElement(\"link\");\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.rel = \"stylesheet\";\n element.type = \"text/css\";\n element.href = url;\n console.debug(\"Bokeh: injecting link tag for BokehJS stylesheet: \", url);\n document.body.appendChild(element);\n }\n\n for (let i = 0; i < js_urls.length; i++) {\n const url = js_urls[i];\n const element = document.createElement('script');\n element.onload = on_load;\n element.onerror = on_error.bind(null, url);\n element.async = false;\n element.src = url;\n console.debug(\"Bokeh: injecting script tag for BokehJS library: \", url);\n document.head.appendChild(element);\n }\n };\n\n function inject_raw_css(css) {\n const element = document.createElement(\"style\");\n element.appendChild(document.createTextNode(css));\n document.body.appendChild(element);\n }\n\n const js_urls = [\"https://cdn.bokeh.org/bokeh/release/bokeh-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-gl-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.4.3.min.js\", \"https://cdn.bokeh.org/bokeh/release/bokeh-mathjax-2.4.3.min.js\"];\n const css_urls = [];\n\n const inline_js = [ function(Bokeh) {\n Bokeh.set_log_level(\"info\");\n },\nfunction(Bokeh) {\n }\n ];\n\n function run_inline_js() {\n if (root.Bokeh !== undefined || force === true) {\n for (let i = 0; i < inline_js.length; i++) {\n inline_js[i].call(root, root.Bokeh);\n }\nif (force === true) {\n display_loaded();\n }} else if (Date.now() < root._bokeh_timeout) {\n setTimeout(run_inline_js, 100);\n } else if (!root._bokeh_failed_load) {\n console.log(\"Bokeh: BokehJS failed to load within specified timeout.\");\n root._bokeh_failed_load = true;\n } else if (force !== true) {\n const cell = $(document.getElementById(\"1001\")).parents('.cell').data().cell;\n cell.output_area.append_execute_result(NB_LOAD_WARNING)\n }\n }\n\n if (root._bokeh_is_loading === 0) {\n console.debug(\"Bokeh: BokehJS loaded, going straight to plotting\");\n run_inline_js();\n } else {\n load_libs(css_urls, js_urls, function() {\n console.debug(\"Bokeh: BokehJS plotting callback run at\", now());\n run_inline_js();\n });\n }\n}(window));", + "application/vnd.bokehjs_load.v0+json": "" }, "metadata": {}, "output_type": "display_data" @@ -394,7 +115,7 @@ { "data": { "text/plain": [ - "'/host_home/Repos/nuplan-devkit/experiments'" + "'/home/sacardoz/nuplan-devkit/experiments'" ] }, "execution_count": 3, @@ -406,26 +127,6 @@ "%pwd" ] }, - { - "cell_type": "code", - "execution_count": 4, - "id": "c8b59d7c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "env: NUPLAN_DATA_ROOT=/home/ehdykhne/Repos/Datasets/nuplan/dataset\n", - "env: NUPLAN_MAPS_ROOT=/home/ehdykhne/Repos/Datasets/nuplan/dataset/maps\n" - ] - } - ], - "source": [ - "%env NUPLAN_DATA_ROOT=/home/ehdykhne/Repos/Datasets/nuplan/dataset\n", - "%env NUPLAN_MAPS_ROOT=/home/ehdykhne/Repos/Datasets/nuplan/dataset/maps" - ] - }, { "cell_type": "markdown", "id": "db337ceb", @@ -436,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "id": "11b08c6d", "metadata": {}, "outputs": [], @@ -455,7 +156,7 @@ " \"scenario_filter.log_names=['2021.06.14.16.48.02_veh-12_04057_04438']\",\n", " 'scenario_filter.limit_total_scenarios=1', # use 1 total scenarios\n", "]\n", - "ckpt_dir = '/home/ehdykhne/Repos/nuplan-devkit/experiments/pretrained_checkpoints/pdm_offset_checkpoint.ckpt'\n", + "ckpt_dir = '/home/sacardoz/checkpoints/urbandriver_checkpoint.ckpt'\n", "#'/home/sacardoz/checkpoints/urbandriver_checkpoint.ckpt'\n", "#\"/home/sacardoz/tutorial_vector_framework/training_simple_vector_experiment/train_default_simple_vector/2023.11.23.09.55.21/best_model/epoch.ckpt\"\n", "#\"/home/sacardoz/training_raster_experiment/train_default_raster/2023.11.23.07.36.36/best_model/epoch.ckpt\"\n", @@ -465,21 +166,20 @@ "\n", "# Compose the configuration\n", "cfg = hydra.compose(config_name=simulation_hydra_paths.config_name, overrides=[\n", - " '+simulation=closed_loop_reactive_agents',\n", - " #'model=pgm_hybrid_model',\n", - " 'planner=pdm_hybrid_planner',\n", - " f\"planner.pdm_hybrid_planner.checkpoint_path={ckpt_dir}\" ,\n", - " #'planner.ml_planner.model_config=${model}',\n", - " #f'planner.ml_planner.checkpoint_path={ckpt_dir}',\n", - " #f'observation=idm_agents_observation',\n", - " #'observation.model_config=${model}',\n", - " #f'observation.checkpoint_path={ckpt_dir}',\n", + " '+simulation=closed_loop_multiagent',\n", + " 'model=urban_driver_open_loop_model',\n", + " 'planner=ml_planner',\n", + " #f\"planner.pdm_hybrid_planner.checkpoint_path={ckpt_dir}\" ,\n", + " 'planner.ml_planner.model_config=${model}',\n", + " f'planner.ml_planner.checkpoint_path={ckpt_dir}',\n", + " 'observation.model_config=${model}',\n", + " f'observation.checkpoint_path={ckpt_dir}',\n", " 'worker=sequential',\n", " '+occlusion=true',\n", - " '+occlusion.manager_type=wedge', #options: [range, shadow, wedge]\n", - " \"hydra.searchpath=[pkg://tuplan_garage.planning.script.config.common, pkg://tuplan_garage.planning.script.config.simulation, pkg://nuplan.planning.script.config.common, pkg://nuplan.planning.script.experiments]\",\n", + " '+occlusion.manager_type=shadow', #options: [range, shadow, wedge]\n", + " \"hydra.searchpath=[pkg://nuplan_garage.planning.script.config.common, pkg://nuplan_garage.planning.script.config.simulation, pkg://nuplan.planning.script.config.common, pkg://nuplan.planning.script.experiments]\",\n", " *DATASET_PARAMS,\n", - "])" + "])\n" ] }, { @@ -492,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "id": "161cc166", "metadata": { "scrolled": true @@ -502,6 +202,8 @@ "name": "stderr", "output_type": "stream", "text": [ + "INFO:nuplan.planning.script.utils:Setting default NUPLAN_DATA_ROOT: /home/sacardoz/nuplan/dataset\n", + "INFO:nuplan.planning.script.utils:Setting default NUPLAN_EXP_ROOT: /home/sacardoz/nuplan/exp\n", "Global seed set to 0\n", "INFO:nuplan.planning.script.builders.main_callback_builder:Building MultiMainCallback...\n", "INFO:nuplan.planning.script.builders.main_callback_builder:Building MultiMainCallback: 4...DONE!\n" @@ -511,32 +213,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-12-04 23:36:26,261 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/worker_pool_builder.py:19} Building WorkerPool...\n", - "2023-12-04 23:36:26,263 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/utils/multithreading/worker_pool.py:101} Worker: Sequential\n", - "2023-12-04 23:36:26,263 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/utils/multithreading/worker_pool.py:102} Number of nodes: 1\n", + "2023-12-05 02:14:01,684 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/worker_pool_builder.py:19} Building WorkerPool...\n", + "2023-12-05 02:14:01,685 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/utils/multithreading/worker_pool.py:101} Worker: Sequential\n", + "2023-12-05 02:14:01,685 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/utils/multithreading/worker_pool.py:102} Number of nodes: 1\n", "Number of CPUs per node: 1\n", "Number of GPUs per node: 0\n", "Number of threads across all nodes: 1\n", - "2023-12-04 23:36:26,263 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/worker_pool_builder.py:27} Building WorkerPool...DONE!\n", - "2023-12-04 23:36:26,263 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:32} Building experiment folders...\n", - "2023-12-04 23:36:26,263 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:35} \n", + "2023-12-05 02:14:01,685 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/worker_pool_builder.py:27} Building WorkerPool...DONE!\n", + "2023-12-05 02:14:01,685 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:32} Building experiment folders...\n", + "2023-12-05 02:14:01,685 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:35} \n", "\n", - "\tFolder where all results are stored: /home/ehdykhne/Repos/Datasets/nuplan/exp/exp/simulation/closed_loop_reactive_agents/2023.12.04.23.36.25\n", + "\tFolder where all results are stored: /home/sacardoz/nuplan/exp/exp/simulation/closed_loop_multiagent/2023.12.05.02.14.01\n", "\n", - "2023-12-04 23:36:26,293 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:70} Building experiment folders...DONE!\n", - "2023-12-04 23:36:26,293 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_callback_builder.py:52} Building AbstractCallback...\n", - "2023-12-04 23:36:26,293 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_callback_builder.py:68} Building AbstractCallback: 0...DONE!\n", - "2023-12-04 23:36:26,293 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:49} Building simulations...\n", - "2023-12-04 23:36:26,293 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:55} Extracting scenarios...\n", - "2023-12-04 23:36:26,294 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/common/utils/distributed_scenario_filter.py:83} Building Scenarios in mode DistributedMode.SINGLE_NODE\n", - "2023-12-04 23:36:26,294 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/scenario_building_builder.py:18} Building AbstractScenarioBuilder...\n", - "2023-12-04 23:36:26,305 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/scenario_building_builder.py:21} Building AbstractScenarioBuilder...DONE!\n", - "2023-12-04 23:36:26,305 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/scenario_filter_builder.py:35} Building ScenarioFilter...\n", - "2023-12-04 23:36:26,306 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/scenario_filter_builder.py:44} Building ScenarioFilter...DONE!\n", - "2023-12-04 23:36:26,381 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:76} Building metric engines...\n", - "2023-12-04 23:36:26,403 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:78} Building metric engines...DONE\n", - "2023-12-04 23:36:26,403 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:82} Building simulations from 1 scenarios...\n", - "2023-12-04 23:36:26,979 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:142} Building simulations...DONE!\n" + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/folder_builder.py:70} Building experiment folders...DONE!\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_callback_builder.py:52} Building AbstractCallback...\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_callback_builder.py:68} Building AbstractCallback: 0...DONE!\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:49} Building simulations...\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:55} Extracting scenarios...\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/common/utils/distributed_scenario_filter.py:83} Building Scenarios in mode DistributedMode.SINGLE_NODE\n", + "2023-12-05 02:14:01,687 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/scenario_building_builder.py:18} Building AbstractScenarioBuilder...\n", + "2023-12-05 02:14:01,700 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/scenario_building_builder.py:21} Building AbstractScenarioBuilder...DONE!\n", + "2023-12-05 02:14:01,700 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/scenario_filter_builder.py:35} Building ScenarioFilter...\n", + "2023-12-05 02:14:01,701 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/scenario_filter_builder.py:44} Building ScenarioFilter...DONE!\n", + "2023-12-05 02:14:01,719 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:76} Building metric engines...\n", + "2023-12-05 02:14:01,744 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:78} Building metric engines...DONE\n", + "2023-12-05 02:14:01,744 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:82} Building simulations from 1 scenarios...\n", + "2023-12-05 02:14:01,746 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/model_builder.py:18} Building TorchModuleWrapper...\n", + "2023-12-05 02:14:01,787 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/model_builder.py:21} Building TorchModuleWrapper...DONE!\n", + "2023-12-05 02:14:01,912 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/model_builder.py:18} Building TorchModuleWrapper...\n", + "2023-12-05 02:14:01,956 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/model_builder.py:21} Building TorchModuleWrapper...DONE!\n", + "2023-12-05 02:14:02,577 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/script/builders/simulation_builder.py:142} Building simulations...DONE!\n" ] } ], @@ -550,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "id": "223284d4", "metadata": {}, "outputs": [], @@ -558,193 +264,186 @@ "runner = runners[0]" ] }, + { + "cell_type": "code", + "execution_count": 7, + "id": "907ad940", + "metadata": {}, + "outputs": [], + "source": [ + "from nuplan.common.actor_state.agent import Agent\n", + "from nuplan.common.actor_state.oriented_box import OrientedBox\n", + "from nuplan.common.actor_state.scene_object import SceneObjectMetadata\n", + "from nuplan.common.actor_state.state_representation import StateSE2, StateVector2D\n", + "\n", + "inserted_agent = Agent(tracked_object_type=TrackedObjectType.VEHICLE,\n", + " oriented_box=OrientedBox(StateSE2(664433, 3997400, 3 * 3.14 / 2), 5, 2, 2),\n", + " velocity=StateVector2D(0,0),\n", + " metadata=SceneObjectMetadata(1623707858950113, \"inserted\", -2, \"inserted\"),\n", + " angular_velocity=0.0)\n", + "\n", + "inserted_goal = StateSE2(664433, 3997000, 3 * 3.14 / 2)" + ] + }, { "cell_type": "code", "execution_count": 8, "id": "90b79421", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " \r" - ] - }, { "name": "stdout", "output_type": "stream", "text": [ - "elapsed time: 0.028219938278198242\n", - "elapsed time: 0.02777719497680664\n", - "elapsed time: 0.02846693992614746\n", - "elapsed time: 0.0270230770111084\n", - "elapsed time: 0.027086973190307617\n", - "elapsed time: 0.02704000473022461\n", - "elapsed time: 0.02687692642211914\n", - "elapsed time: 0.02667236328125\n", - "elapsed time: 0.027269363403320312\n", - "elapsed time: 0.026731491088867188\n", - "elapsed time: 0.02642965316772461\n", - "elapsed time: 0.02652263641357422\n", - "elapsed time: 0.026285171508789062\n", - "elapsed time: 0.026721715927124023\n", - "elapsed time: 0.02680516242980957\n", - "elapsed time: 0.026640892028808594\n", - "elapsed time: 0.02759575843811035\n", - "elapsed time: 0.02881908416748047\n", - "elapsed time: 0.02743077278137207\n", - "elapsed time: 0.02760910987854004\n", - "elapsed time: 0.026903390884399414\n", - "elapsed time: 0.027498245239257812\n", - "elapsed time: 0.02749776840209961\n", - "elapsed time: 0.027604103088378906\n", - "elapsed time: 0.028120994567871094\n", - "elapsed time: 0.028057098388671875\n", - "elapsed time: 0.02862381935119629\n", - "elapsed time: 0.02895808219909668\n", - "elapsed time: 0.02965092658996582\n", - "elapsed time: 0.02978205680847168\n", - "elapsed time: 0.030011653900146484\n", - "elapsed time: 0.029865503311157227\n", - "elapsed time: 0.03024911880493164\n", - "elapsed time: 0.02980661392211914\n", - "elapsed time: 0.030503511428833008\n", - "elapsed time: 0.0301516056060791\n", - "elapsed time: 0.0298004150390625\n", - "elapsed time: 0.029525279998779297\n", - "elapsed time: 0.029907703399658203\n", - "elapsed time: 0.029463529586791992\n", - "elapsed time: 0.02914571762084961\n", - "elapsed time: 0.0291597843170166\n", - "elapsed time: 0.02936530113220215\n", - "elapsed time: 0.029200077056884766\n", - "elapsed time: 0.0286557674407959\n", - "elapsed time: 0.02902507781982422\n", - "elapsed time: 0.028758764266967773\n", - "elapsed time: 0.02935171127319336\n", - "elapsed time: 0.029259204864501953\n", - "elapsed time: 0.029033422470092773\n", - "elapsed time: 0.028880834579467773\n", - "elapsed time: 0.028924226760864258\n", - "elapsed time: 0.028826475143432617\n", - "elapsed time: 0.028478622436523438\n", - "elapsed time: 0.0288240909576416\n", - "elapsed time: 0.02877044677734375\n", - "elapsed time: 0.028140544891357422\n", - "elapsed time: 0.02760028839111328\n", - "elapsed time: 0.027898073196411133\n", - "elapsed time: 0.02771472930908203\n", - "elapsed time: 0.027673721313476562\n", - "elapsed time: 0.02758169174194336\n", - "elapsed time: 0.027628183364868164\n", - "elapsed time: 0.027477741241455078\n", - "elapsed time: 0.027070999145507812\n", - "elapsed time: 0.026733875274658203\n", - "elapsed time: 0.02656245231628418\n", - "elapsed time: 0.026247739791870117\n", - "elapsed time: 0.02589249610900879\n", - "elapsed time: 0.025628089904785156\n", - "elapsed time: 0.025936126708984375\n", - "elapsed time: 0.0257565975189209\n", - "elapsed time: 0.025776147842407227\n", - "elapsed time: 0.025105953216552734\n", - "elapsed time: 0.024316072463989258\n", - "elapsed time: 0.02410602569580078\n", - "elapsed time: 0.0240628719329834\n", - "elapsed time: 0.023929595947265625\n", - "elapsed time: 0.024273395538330078\n", - "elapsed time: 0.023852109909057617\n", - "elapsed time: 0.023021221160888672\n", - "elapsed time: 0.024117708206176758\n", - "elapsed time: 0.023128271102905273\n", - "elapsed time: 0.02261972427368164\n", - "elapsed time: 0.022465229034423828\n", - "elapsed time: 0.022220611572265625\n", - "elapsed time: 0.021961688995361328\n", - "elapsed time: 0.02196502685546875\n", - "elapsed time: 0.021490097045898438\n", - "elapsed time: 0.02141594886779785\n", - "elapsed time: 0.02118968963623047\n", - "elapsed time: 0.021246671676635742\n", - "elapsed time: 0.020877838134765625\n", - "elapsed time: 0.020760774612426758\n", - "elapsed time: 0.020011425018310547\n", - "elapsed time: 0.020204544067382812\n", - "elapsed time: 0.019935131072998047\n", - "elapsed time: 0.020002126693725586\n", - "elapsed time: 0.020210981369018555\n", - "elapsed time: 0.01934981346130371\n", - "elapsed time: 0.0188140869140625\n", - "elapsed time: 0.01867389678955078\n", - "elapsed time: 0.018260478973388672\n", - "elapsed time: 0.01837778091430664\n", - "elapsed time: 0.018278837203979492\n", - "elapsed time: 0.018478870391845703\n", - "elapsed time: 0.018354177474975586\n", - "elapsed time: 0.01824164390563965\n", - "elapsed time: 0.017989397048950195\n", - "elapsed time: 0.018170833587646484\n", - "elapsed time: 0.017641782760620117\n", - "elapsed time: 0.017865657806396484\n", - "elapsed time: 0.017589569091796875\n", - "elapsed time: 0.01693439483642578\n", - "elapsed time: 0.016333580017089844\n", - "elapsed time: 0.016154050827026367\n", - "elapsed time: 0.01594376564025879\n", - "elapsed time: 0.015879392623901367\n", - "elapsed time: 0.015716075897216797\n", - "elapsed time: 0.01625823974609375\n", - "elapsed time: 0.015722990036010742\n", - "elapsed time: 0.01554727554321289\n", - "elapsed time: 0.015479564666748047\n", - "elapsed time: 0.01556706428527832\n", - "elapsed time: 0.015661954879760742\n", - "elapsed time: 0.01565694808959961\n", - "elapsed time: 0.014882326126098633\n", - "elapsed time: 0.014642000198364258\n", - "elapsed time: 0.014568328857421875\n", - "elapsed time: 0.014591693878173828\n", - "elapsed time: 0.014154195785522461\n", - "elapsed time: 0.014048576354980469\n", - "elapsed time: 0.013832807540893555\n", - "elapsed time: 0.013761281967163086\n", - "elapsed time: 0.013667583465576172\n", - "elapsed time: 0.01350092887878418\n", - "elapsed time: 0.013176918029785156\n", - "elapsed time: 0.013062000274658203\n", - "elapsed time: 0.013159036636352539\n", - "elapsed time: 0.013329505920410156\n", - "elapsed time: 0.013332366943359375\n", - "elapsed time: 0.013476133346557617\n", - "elapsed time: 0.013322591781616211\n", - "elapsed time: 0.01374506950378418\n", - "elapsed time: 0.013417720794677734\n", - "elapsed time: 0.013437509536743164\n", - "elapsed time: 0.013459444046020508\n", - "elapsed time: 0.013498783111572266\n", - "elapsed time: 0.013631343841552734\n", - "elapsed time: 0.013602733612060547\n", - "elapsed time: 0.013532161712646484\n", - "elapsed time: 0.013321399688720703\n", - "elapsed time: 0.013411521911621094\n", - "elapsed time: 0.013401508331298828\n", - "elapsed time: 0.013605833053588867\n", - "elapsed time: 0.013462543487548828\n", - "elapsed time: 0.013318061828613281\n", - "elapsed time: 0.013405323028564453\n", - "elapsed time: 0.013209819793701172\n", - "elapsed time: 0.013265848159790039\n", - "elapsed time: 0.01320028305053711\n", - "elapsed time: 0.013041496276855469\n", - "elapsed time: 0.013081550598144531\n", - "elapsed time: 0.013251304626464844\n", - "elapsed time: 0.0133819580078125\n", - "elapsed time: 0.013030290603637695\n", - "elapsed time: 0.013294696807861328\n", - "elapsed time: 0.013309478759765625\n", - "elapsed time: 0.013379335403442383\n", - "elapsed time: 0.01327824592590332\n" + "SimulationIteration(time_point=TimePoint(time_us=1623707846350127), index=0)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846450055), index=1)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846549980), index=2)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846649908), index=3)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846749828), index=4)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846849751), index=5)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707846949678), index=6)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847049600), index=7)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847149533), index=8)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847249494), index=9)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847349489), index=10)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847449511), index=11)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847549545), index=12)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847649595), index=13)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847749661), index=14)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847849740), index=15)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707847949830), index=16)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848049917), index=17)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848149996), index=18)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848250061), index=19)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848350125), index=20)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848450201), index=21)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848550285), index=22)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848650366), index=23)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848750437), index=24)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848850498), index=25)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707848950550), index=26)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849050609), index=27)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849150663), index=28)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849250694), index=29)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849350712), index=30)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849450721), index=31)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849550719), index=32)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849650719), index=33)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849750708), index=34)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849850693), index=35)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707849950680), index=36)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850050657), index=37)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850150617), index=38)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850250579), index=39)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850350533), index=40)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850450476), index=41)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850550409), index=42)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850650331), index=43)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850750249), index=44)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850850165), index=45)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707850950074), index=46)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851049984), index=47)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851149906), index=48)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851249854), index=49)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851349817), index=50)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851449795), index=51)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851549788), index=52)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851649785), index=53)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851749789), index=54)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851849798), index=55)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707851949814), index=56)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852049839), index=57)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852149873), index=58)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852249912), index=59)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852349958), index=60)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852450015), index=61)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852550074), index=62)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852650134), index=63)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852750202), index=64)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852850274), index=65)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707852950341), index=66)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853050396), index=67)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853150437), index=68)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853250455), index=69)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853350458), index=70)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853450447), index=71)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853550423), index=72)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853650396), index=73)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853750371), index=74)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853850348), index=75)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707853950316), index=76)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854050282), index=77)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854150246), index=78)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854250202), index=79)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854350166), index=80)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854450127), index=81)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854550087), index=82)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854650049), index=83)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854750013), index=84)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854849975), index=85)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707854949934), index=86)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855049897), index=87)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855149866), index=88)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855249835), index=89)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855349806), index=90)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855449781), index=91)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855549767), index=92)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855649761), index=93)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855749759), index=94)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855849764), index=95)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707855949781), index=96)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856049800), index=97)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856149811), index=98)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856249820), index=99)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856349835), index=100)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856449843), index=101)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856549842), index=102)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856649840), index=103)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856749839), index=104)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856849830), index=105)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707856949823), index=106)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857049822), index=107)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857149827), index=108)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857249832), index=109)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857349847), index=110)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857449869), index=111)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857549895), index=112)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857649926), index=113)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857749959), index=114)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857849999), index=115)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707857950037), index=116)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858050070), index=117)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858150098), index=118)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858250120), index=119)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858350135), index=120)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858450145), index=121)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858550149), index=122)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858650146), index=123)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858750137), index=124)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858850126), index=125)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707858950113), index=126)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859050096), index=127)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859150076), index=128)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859250064), index=129)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859350064), index=130)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859450064), index=131)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859550063), index=132)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859650055), index=133)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859750047), index=134)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859850041), index=135)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707859950028), index=136)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860050018), index=137)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860150002), index=138)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860249979), index=139)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860349963), index=140)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860449960), index=141)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860549964), index=142)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860649965), index=143)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860749961), index=144)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860849946), index=145)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707860949927), index=146)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707861049906), index=147)\n", + "SimulationIteration(time_point=TimePoint(time_us=1623707861149865), index=148)\n" ] } ], @@ -755,6 +454,10 @@ "runner._initialize()\n", "\n", "while runner.simulation.is_simulation_running():\n", + "\n", + " if runner.simulation._time_controller.get_iteration().index == 125:\n", + " runner.simulation._observations.add_agent_to_scene(inserted_agent, inserted_goal, iteration.time_point)\n", + "\n", " # Execute specific callback\n", " runner.simulation.callback.on_step_start(runner.simulation.setup, runner.planner)\n", "\n", @@ -771,7 +474,7 @@ " runner._simulation.callback.on_planner_end(runner.simulation.setup, runner.planner, trajectory)\n", "\n", " iteration = runner.simulation._time_controller.get_iteration()\n", - "\n", + " print(iteration)\n", " runner.simulation.propagate(trajectory)\n", "\n", " # Execute specific callback\n", @@ -782,7 +485,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "e6c22f5f", "metadata": { "scrolled": true @@ -792,7 +495,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO:bokeh.server.server:Starting Bokeh server version 2.4.3 (running on Tornado 6.2)\n", + "INFO:bokeh.server.server:Starting Bokeh server version 2.4.3 (running on Tornado 6.3.3)\n", "WARNING:bokeh.server.util:Host wildcard '*' will allow connections originating from multiple (or possibly all) hostnames or IPs. Use non-wildcard values to restrict access explicitly\n", "INFO:bokeh.server.tornado:User authentication hooks NOT provided (default user enabled)\n" ] @@ -805,7 +508,7 @@ " (function() {\n", " const xhr = new XMLHttpRequest()\n", " xhr.responseType = 'blob';\n", - " xhr.open('GET', \"http://localhost:5006/autoload.js?bokeh-autoload-element=1003&bokeh-absolute-url=http://localhost:5006&resources=none\", true);\n", + " xhr.open('GET', \"http://localhost:5008/autoload.js?bokeh-autoload-element=1003&bokeh-absolute-url=http://localhost:5008&resources=none\", true);\n", " xhr.onload = function (event) {\n", " const script = document.createElement('script');\n", " const src = URL.createObjectURL(event.target.response);\n", @@ -819,7 +522,7 @@ }, "metadata": { "application/vnd.bokehjs_exec.v0+json": { - "server_id": "e6e966ebbd494438b1ac64effae4c8b2" + "server_id": "98f8c05cc9d14e8a9b309f39e6f6f8e6" } }, "output_type": "display_data" @@ -828,59 +531,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-12-04 23:37:42,023 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,024 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,026 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt'. Is this a 'parquet' file?: Could not open Parquet input source 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,027 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from '.ipynb_checkpoints/test_notebook-checkpoint.ipynb'. Is this a 'parquet' file?: Could not open Parquet input source '.ipynb_checkpoints/test_notebook-checkpoint.ipynb': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,028 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml'. Is this a 'parquet' file?: Could not open Parquet input source 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,028 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:42,032 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/simulation_tile.py:172} Minimum frame time=0.017 s\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Rendering a scenario: 100%|██████████| 1/1 [00:00<00:00, 157.64it/s]\n", - "WARNING:bokeh.core.validation.check:W-1000 (MISSING_RENDERERS): Plot has no renderers: Figure(id='1005', ...)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-12-04 23:37:44,012 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET / (10.40.117.44) 2030.70ms\n", - "2023-12-04 23:37:44,023 INFO {/home/ehdykhne/Repos/nuplan-devkit/tutorials/utils/tutorial_utils.py:267} Done rendering!\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:tornado.access:200 GET / (10.40.117.44) 2030.70ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-12-04 23:37:44,370 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET /static/js/bokeh-gl.min.js?v=e5df31fd9010eacff0aa72d315264604b5e34972ba445acea6fce98080eecf33acf2d2986126360faaa5852813cffa16f6f6f4889923318300f062497c02da4e (10.40.117.44) 271.87ms\n", - "2023-12-04 23:37:44,398 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET /static/js/bokeh.min.js?v=3c61e952b808bb7e346ce828a565a5f23aaf7708d034fa9d0906403813355d45bb4e8d8b0b23a93f032c76831d4f0221846f28699c7f5147caa62e0d31668314 (10.40.117.44) 299.84ms\n", - "2023-12-04 23:37:44,400 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET /static/js/bokeh-widgets.min.js?v=8a1ff6f5aa0d967f4998d275803bbb111d928fd9f605ef9e1f30cfd021df0e77224ee3d13f83edb3a942f6e4ccc569ee5dd8951a8aa6cb600602463b90c65a87 (10.40.117.44) 301.22ms\n", - "2023-12-04 23:37:44,435 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET /static/js/bokeh-tables.min.js?v=ae2903e57cf57f52819fdf4d938c648982b51c34f73b6e653a0f3bb3c8ab44f338505931ace43eafc1636e215492e2314acf54c54baffb47813b86b4923a7fe0 (10.40.117.44) 37.66ms\n" + "2023-12-05 02:24:51,738 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", + "2023-12-05 02:24:51,739 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", + "2023-12-05 02:24:51,740 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt'. Is this a 'parquet' file?: Could not open Parquet input source 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", + "2023-12-05 02:24:51,740 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", + "2023-12-05 02:24:51,740 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml'. Is this a 'parquet' file?: Could not open Parquet input source 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", + "2023-12-05 02:24:51,742 INFO {/home/sacardoz/nuplan-devkit/nuplan/planning/nuboard/base/simulation_tile.py:172} Minimum frame time=0.017 s\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO:tornado.access:200 GET /static/js/bokeh-gl.min.js?v=e5df31fd9010eacff0aa72d315264604b5e34972ba445acea6fce98080eecf33acf2d2986126360faaa5852813cffa16f6f6f4889923318300f062497c02da4e (10.40.117.44) 271.87ms\n", - "INFO:tornado.access:200 GET /static/js/bokeh.min.js?v=3c61e952b808bb7e346ce828a565a5f23aaf7708d034fa9d0906403813355d45bb4e8d8b0b23a93f032c76831d4f0221846f28699c7f5147caa62e0d31668314 (10.40.117.44) 299.84ms\n", - "INFO:tornado.access:200 GET /static/js/bokeh-widgets.min.js?v=8a1ff6f5aa0d967f4998d275803bbb111d928fd9f605ef9e1f30cfd021df0e77224ee3d13f83edb3a942f6e4ccc569ee5dd8951a8aa6cb600602463b90c65a87 (10.40.117.44) 301.22ms\n", - "INFO:tornado.access:200 GET /static/js/bokeh-tables.min.js?v=ae2903e57cf57f52819fdf4d938c648982b51c34f73b6e653a0f3bb3c8ab44f338505931ace43eafc1636e215492e2314acf54c54baffb47813b86b4923a7fe0 (10.40.117.44) 37.66ms\n", - "INFO:tornado.access:200 GET /static/js/bokeh-mathjax.min.js?v=176c36fdbcd8fc1019fc828101a2804081a35baf4018d7f2633cd263156b593aa73112f400112b662daa0590138b74851bc91f1f2a5fbf5416ee8c876c3e0d0c (10.40.117.44) 135.59ms\n", + "Rendering a scenario: 100%|██████████| 1/1 [00:00<00:00, 17.42it/s]\n", + "WARNING:bokeh.core.validation.check:W-1000 (MISSING_RENDERERS): Plot has no renderers: Figure(id='1005', ...)\n", + "INFO:tornado.access:200 GET /autoload.js?bokeh-autoload-element=1003&bokeh-absolute-url=http://localhost:5008&resources=none (::1) 1379.10ms\n", "INFO:bokeh.server.views.ws:WebSocket connection opened\n", - "INFO:tornado.access:101 GET /ws (10.40.117.44) 1.63ms\n", + "INFO:tornado.access:101 GET /ws?id=5633698c-81fb-4686-8a38-bed76da7b3ba&origin=da2f890a-eb18-4637-9199-dd0f06169aef&swVersion=4&extensionId=&platform=electron&vscode-resource-base-authority=vscode-resource.vscode-cdn.net&parentOrigin=vscode-file%3A%2F%2Fvscode-app&purpose=notebookRenderer (::1) 0.61ms\n", "INFO:bokeh.server.views.ws:ServerConnection created\n" ] }, @@ -888,63 +555,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "2023-12-04 23:37:45,376 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET /static/js/bokeh-mathjax.min.js?v=176c36fdbcd8fc1019fc828101a2804081a35baf4018d7f2633cd263156b593aa73112f400112b662daa0590138b74851bc91f1f2a5fbf5416ee8c876c3e0d0c (10.40.117.44) 135.59ms\n", - "2023-12-04 23:37:45,551 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 101 GET /ws (10.40.117.44) 1.63ms\n", - "2023-12-04 23:37:45,664 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,666 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,666 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt'. Is this a 'parquet' file?: Could not open Parquet input source 'pretrained_checkpoints/gc_pgp_checkpoint.ckpt': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,667 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from '.ipynb_checkpoints/test_notebook-checkpoint.ipynb'. Is this a 'parquet' file?: Could not open Parquet input source '.ipynb_checkpoints/test_notebook-checkpoint.ipynb': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,667 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Error creating dataset. Could not read schema from 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml'. Is this a 'parquet' file?: Could not open Parquet input source 'run_sim_closed_loop/training_raster_experiment/train_default_raster/2023.11.14.22.55.23/hparams.yaml': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,667 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/experiment_file_data.py:140} Could not open Parquet input source '<Buffer>': Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.\n", - "2023-12-04 23:37:45,669 INFO {/home/ehdykhne/Repos/nuplan-devkit/nuplan/planning/nuboard/base/simulation_tile.py:172} Minimum frame time=0.017 s\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Rendering a scenario: 100%|██████████| 1/1 [00:00<00:00, 10.45it/s]\n", - "WARNING:bokeh.core.validation.check:W-1000 (MISSING_RENDERERS): Plot has no renderers: Figure(id='3857', ...)\n", - "INFO:tornado.access:200 GET / (10.40.117.44) 805.62ms\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2023-12-04 23:37:46,467 INFO {/opt/conda/lib/python3.9/site-packages/tornado/web.py:2271} 200 GET / (10.40.117.44) 805.62ms\n", - "2023-12-04 23:37:46,513 INFO {/home/ehdykhne/Repos/nuplan-devkit/tutorials/utils/tutorial_utils.py:267} Done rendering!\n" + "2023-12-05 02:24:53,085 INFO {/home/sacardoz/miniconda3/envs/nuplan/lib/python3.9/site-packages/tornado/web.py:2344} 200 GET /autoload.js?bokeh-autoload-element=1003&bokeh-absolute-url=http://localhost:5008&resources=none (::1) 1379.10ms\n", + "2023-12-05 02:24:53,096 INFO {/home/sacardoz/nuplan-devkit/tutorials/utils/tutorial_utils.py:267} Done rendering!\n", + "2023-12-05 02:24:53,097 INFO {/home/sacardoz/miniconda3/envs/nuplan/lib/python3.9/site-packages/tornado/web.py:2344} 101 GET /ws?id=5633698c-81fb-4686-8a38-bed76da7b3ba&origin=da2f890a-eb18-4637-9199-dd0f06169aef&swVersion=4&extensionId=&platform=electron&vscode-resource-base-authority=vscode-resource.vscode-cdn.net&parentOrigin=vscode-file%3A%2F%2Fvscode-app&purpose=notebookRenderer (::1) 0.61ms\n" ] } ], "source": [ "from tutorials.utils.tutorial_utils import visualize_history\n", - "visualize_history(runner.simulation._history, runner.scenario, bokeh_port=5006)" + "visualize_history(runner.simulation._history, runner.scenario, bokeh_port=5008)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "887a51e2", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e0a12035", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "67b67b86", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -963,7 +583,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/nuplan/planning/script/config/simulation/default_run_metric_aggregator.yaml b/nuplan/planning/script/config/simulation/default_run_metric_aggregator.yaml index fdd8aa020519607f56b056ec972afe90676e5a65..443ed41d5fd53e280928b329caaa740e602a1f61 100644 --- a/nuplan/planning/script/config/simulation/default_run_metric_aggregator.yaml +++ b/nuplan/planning/script/config/simulation/default_run_metric_aggregator.yaml @@ -13,6 +13,7 @@ defaults: - open_loop_boxes_weighted_average - closed_loop_nonreactive_agents_weighted_average - closed_loop_reactive_agents_weighted_average + - closed_loop_multiagent_weighted_average - override hydra/job_logging: none # Disable hydra's logging - override hydra/hydra_logging: none # Disable hydra's logging diff --git a/nuplan/planning/script/config/simulation/metric_aggregator/closed_loop_multiagent_weighted_average.yaml b/nuplan/planning/script/config/simulation/metric_aggregator/closed_loop_multiagent_weighted_average.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f490e7db9e22021d6adbf58df7db178cfa2ccfe3 --- /dev/null +++ b/nuplan/planning/script/config/simulation/metric_aggregator/closed_loop_multiagent_weighted_average.yaml @@ -0,0 +1,19 @@ +closed_loop_reactive_agents_weighted_average: + _target_: nuplan.planning.metrics.aggregator.weighted_average_metric_aggregator.WeightedAverageMetricAggregator + name: 'closed_loop_multiagent_weighted_average' + metric_weights: # Below we list the metrics used in the scenario scoring function and their corresponsing weights to calculate a weighted average score for each scenario, + # if not specified, the weight is set as default. + # metric name : metric weight in the weighted average function + ego_progress_along_expert_route: 5.0 # This metric has the highest weight equal to 5.0 in the weighted average function, its base score can take a value in [0,1] depending on the ratio of ego to expert progress + time_to_collision_within_bound: 5.0 # This metric has the highest weight equal to 5.0 in the weighted average function, its base score can be 0 or 1 depending on the minimum time to collision threshold + speed_limit_compliance: 4.0 # This metric has a weight equal to 4.0 in the weighted average function, its base score can take a value in [0,1] depending on the amount and duration of over-speeding + ego_is_comfortable: 2.0 # This metric has the lowest weight equal to 2.0 in the weighted average function, its base score can be 0 or 1 depending on the comfort thresholds on acceleration, jerk and yaw. + default: 1.0 + file_name: closed_loop_multiagent_weighted_average_metrics_${now:${date_format}} + # The scenario score is defined as the weighted average score of the metrics listed above, multiplied by the score of the multiple_metrics below. + multiple_metrics: + - no_ego_at_fault_collisions # This metric score can be 0, 0.5 or 1 depending on whether there is an at fault collision with VRUs, vehicles or objects + - drivable_area_compliance # This metric score can be 0 or 1 depending on whether ego drives outside the drivable area + - ego_is_making_progress # This metric score can be 0 or 1 depending on whether ego makes progress more than a minimum threshold compared to expert's progress + - driving_direction_compliance # This metric score can be 0 or 0.5 or 1 depending on how much ego drives in the opposite direction if any + challenge_name: closed_loop_multiagent diff --git a/nuplan/planning/script/config/simulation/observation/ml_planner_agents_observation.yaml b/nuplan/planning/script/config/simulation/observation/ml_planner_agents_observation.yaml new file mode 100644 index 0000000000000000000000000000000000000000..8f84c52cde0754838620a5600154adaa867534ff --- /dev/null +++ b/nuplan/planning/script/config/simulation/observation/ml_planner_agents_observation.yaml @@ -0,0 +1,5 @@ +_target_: nuplan.planning.simulation.observation.ml_planner_agents.MLPlannerAgents +_convert_: 'all' + +model_config: ??? # Dictionary key from existing planner model config (e.g. reactive_agents_model) +checkpoint_path: ??? # Path to trained model checkpoint diff --git a/nuplan/planning/script/experiments/simulation/closed_loop_multiagent.yaml b/nuplan/planning/script/experiments/simulation/closed_loop_multiagent.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5b6d3fa902076cfd3b9053aabe0273b77be88c6d --- /dev/null +++ b/nuplan/planning/script/experiments/simulation/closed_loop_multiagent.yaml @@ -0,0 +1,10 @@ +# @package _global_ +job_name: closed_loop_multiagent + +defaults: + - override /observation: ml_planner_agents_observation + - override /ego_controller: two_stage_controller + - override /planner: ml_planner + - override /simulation_metric: simulation_closed_loop_reactive_agents + - override /metric_aggregator: + - closed_loop_multiagent_weighted_average diff --git a/nuplan/planning/simulation/observation/ml_planner_agents.py b/nuplan/planning/simulation/observation/ml_planner_agents.py new file mode 100644 index 0000000000000000000000000000000000000000..fb4fa746dc57aa9182773fa363bae20441454582 --- /dev/null +++ b/nuplan/planning/simulation/observation/ml_planner_agents.py @@ -0,0 +1,268 @@ +from collections import deque +from copy import deepcopy +from typing import Dict, List, Type + +from nuplan.common.actor_state.agent import Agent +from nuplan.common.actor_state.ego_state import EgoState +from nuplan.common.actor_state.scene_object import SceneObjectMetadata +from nuplan.common.actor_state.state_representation import StateSE2, StateVector2D, TimePoint +from nuplan.common.actor_state.tracked_objects import TrackedObject, TrackedObjects +from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType +from nuplan.common.actor_state.vehicle_parameters import VehicleParameters + +from nuplan.planning.scenario_builder.abstract_scenario import AbstractScenario +from nuplan.planning.simulation.history.simulation_history_buffer import SimulationHistoryBuffer +from nuplan.planning.simulation.observation.abstract_observation import AbstractObservation +from nuplan.planning.simulation.observation.observation_type import Observation +from nuplan.planning.simulation.observation.observation_type import DetectionsTracks +from nuplan.planning.simulation.planner.abstract_planner import PlannerInitialization, PlannerInput +from nuplan.planning.simulation.planner.ml_planner.ml_planner import MLPlanner +from nuplan.planning.simulation.simulation_time_controller.simulation_iteration import SimulationIteration +from nuplan.planning.training.modeling.torch_module_wrapper import TorchModuleWrapper + + +OPEN_LOOP_DETECTION_TYPES = [TrackedObjectType.PEDESTRIAN, TrackedObjectType.BICYCLE, \ + TrackedObjectType.CZONE_SIGN, TrackedObjectType.BARRIER, \ + TrackedObjectType.TRAFFIC_CONE, TrackedObjectType.GENERIC_OBJECT] + +class MLPlannerAgents(AbstractObservation): + """ + Simulate agents based on an ML model. + """ + + def __init__(self, model: TorchModuleWrapper, scenario: AbstractScenario) -> None: + """ + Initializes the MLPlannerAgents class. + :param model: Model to use for inference. + :param scenario: scenario + """ + self.current_iteration = 0 + self.model = model + self._scenario = scenario + self._ego_state_history: Dict = {} + self._agent_prescence_threshold = 10 + self._agents: Dict = None + + def reset(self) -> None: + """Inherited, see superclass.""" + self.current_iteration = 0 + self._agents = None + + def _get_agents(self): + """ + Gets dict of tracked agents, or lazily creates them it + from vehicles at simulation start if it does not exist. + """ + + if not self._agents: + self._agents = {} + for agent in self._scenario.initial_tracked_objects.tracked_objects.get_tracked_objects_of_type(TrackedObjectType.VEHICLE): + + + # TODO: Support ego controllers - right now just doing perfect tracking. + # Revist whether there is a better way of translating agent states to ego states. + # Revist whether there is a better way of setting agent goals. + # Filter out impossible/off-road initial detections. + + # Sets agent goal to be it's last known point in the simulation. This results in some strange driving behaviour + # if the agent disappears early in a scene. + goal = None + + for frame in range(self._scenario.get_number_of_iterations()-1, self._agent_prescence_threshold, -1): + last_scenario_frame = self._scenario.get_tracked_objects_at_iteration(frame) + matched_track = None + for track in last_scenario_frame.tracked_objects.tracked_objects: + if track.metadata.track_token == agent.metadata.track_token: + matched_track = track + break + + if matched_track: + goal = matched_track.center + break + + if goal: + # Estimates ego states from agent state at simulation starts, stores metadata and creates planner for each agent + self._agents[agent.metadata.track_token] = {'ego_state': self._build_ego_state_from_agent(agent, self._scenario.start_time), \ + 'metadata': agent.metadata, + 'planner': MLPlanner(self.model)} + # Initialize planner. + planner_init = PlannerInitialization( + route_roadblock_ids=self._scenario.get_route_roadblock_ids(), + mission_goal=goal, + map_api=self._scenario.map_api, + ) + + self._agents[agent.metadata.track_token]['planner'].initialize(planner_init) + + return self._agents + + def observation_type(self) -> Type[Observation]: + """Inherited, see superclass.""" + return DetectionsTracks # type: ignore + + def initialize(self) -> None: + """Inherited, see superclass.""" + pass + + def get_observation(self) -> DetectionsTracks: + """Inherited, see superclass.""" + agents = [self._build_agent_from_ego_state(v['ego_state'], v['metadata']) for v in self._get_agents().values()] + open_loop_detections = self._get_open_loop_track_objects(self.current_iteration) + open_loop_detections.extend(agents) + return DetectionsTracks(tracked_objects=TrackedObjects(open_loop_detections)) + + def update_observation( + self, iteration: SimulationIteration, next_iteration: SimulationIteration, history: SimulationHistoryBuffer + ) -> None: + """Inherited, see superclass.""" + self.current_iteration = next_iteration.index + self.propagate_agents(iteration, next_iteration, history) + + def _get_open_loop_track_objects(self, iteration: int) -> List[TrackedObject]: + """ + Get open-loop tracked objects from scenario. + :param iteration: The simulation iteration. + :return: A list of TrackedObjects. + """ + + detections = self._scenario.get_tracked_objects_at_iteration(iteration) + return detections.tracked_objects.get_tracked_objects_of_types(OPEN_LOOP_DETECTION_TYPES) + + def propagate_agents(self, iteration: SimulationIteration, next_iteration: SimulationIteration, history: SimulationHistoryBuffer): + """ + Propagates agents into next timestep by constructing input for each agent planner, then interpolating new agent + states from the predicted trajectory for each from their respective planners. Caches computed agent states. + """ + + traffic_light_data = list(self._scenario.get_traffic_light_status_at_iteration(iteration.index)) + + # TODO: Find way to parallelize. + # TODO: Propagate non-ego and lower frequency to improve performance. + for agent_token, agent_data in self._agents.items(): + history_input = self._build_history_input(agent_token, agent_data['ego_state'], history) + planner_input = PlannerInput(iteration=iteration, history=history_input, traffic_light_data=traffic_light_data) + trajectory = agent_data['planner'].compute_trajectory(planner_input) + agent_data['ego_state'] = trajectory.get_state_at_time(next_iteration.time_point) + self._ego_state_history[agent_token][next_iteration.time_point] = agent_data['ego_state'] + + def _build_ego_state_from_agent(self, agent: Agent, time_point: TimePoint) -> EgoState: + """ + Builds ego state from corresponding agent state. Since this process is imperfect, it uses cached ego states from the propagation + so casting is only required for the beginning agent states for which we have no propagation information. + """ + + if agent.metadata.track_token in self._ego_state_history: + if time_point in self._ego_state_history[agent.metadata.track_token]: + return self._ego_state_history[agent.metadata.track_token][time_point] + else: + self._ego_state_history[agent.metadata.track_token] = {} + + # Most of this is just eyeballed, so there may be a more principled way of setting these values. + output = EgoState.build_from_center( + center=agent.center, + center_velocity_2d=agent.velocity, + center_acceleration_2d=StateVector2D(0, 0), + tire_steering_angle=0, + time_point=time_point, + vehicle_parameters=VehicleParameters( + vehicle_name=agent.track_token, + vehicle_type="gen1", + width=agent.box.width, + front_length=agent.box.length * 4 / 5, + rear_length=agent.box.length * 1 / 5, + wheel_base=agent.box.length * 3 / 5, + cog_position_from_rear_axle=agent.box.length * 1.5 / 5, + height=agent.box.height, + ), + ) + + self._ego_state_history[agent.metadata.track_token][time_point] = output + return output + + def _build_agent_from_ego_state(self, ego_state: EgoState, scene_object_metadata: SceneObjectMetadata) -> Agent: + """ + Builds agent state from corresponding ego state. Unlike the inverse this process is well-defined. + """ + + agent_state = Agent( + metadata=scene_object_metadata, + tracked_object_type=TrackedObjectType.VEHICLE, + oriented_box=ego_state.car_footprint.oriented_box, + velocity=ego_state.dynamic_car_state.center_velocity_2d, + ) + return agent_state + + def _build_history_input(self, agent_track_token: str, current_state: EgoState, history: SimulationHistoryBuffer) -> SimulationHistoryBuffer: + """ + Builds the planner history input for a given agent. This requires us the interchange the ego states of the actual ego with the + constructed ego states of the agent of interest, and create observations corresponding to the ego in the observation history buffer. + """ + ego_state_buffer = history.ego_state_buffer + observation_buffer = history.observation_buffer + + new_observations = [] + faux_ego_obervations = [] + + # Construct a timestep/track_token to observation loopup table for faster proessing + track_token_agent_dict = {} + for t, observation in enumerate(observation_buffer): + track_token_agent_dict[t] = {} + for agent in observation.tracked_objects.tracked_objects: + track_token_agent_dict[t][agent.metadata.track_token] = agent + + # Loop through history buffer + for t, (ego_state, observation) in enumerate(zip(ego_state_buffer, observation_buffer)): + + # Convert actual ego state into agent object + ego_agent_object = self._build_agent_from_ego_state(ego_state, \ + SceneObjectMetadata(token='ego', track_token="ego", track_id=-1, \ + timestamp_us=ego_state.time_us)) + + # Get agent object corresponding to agent from observation buffer. If one does not exist for current timestep, take from the future, + # if one does not exist from the future, take the current state. This might occur at the first timestep for observations that have no + # logged history prior to simulation start, or observations inserted mid-simulation. + matched_agent = None + + for i in range(t, len(observation_buffer)): + if i in track_token_agent_dict and agent_track_token in track_token_agent_dict[i]: + matched_agent = track_token_agent_dict[i][agent_track_token] + break + + # Convert agent state to a corresponding "ego state" object, or pull it from cache if already computed. + if matched_agent is None: + faux_ego_observation = deepcopy(current_state) + faux_ego_observation._time_point = ego_state.time_point + else: + faux_ego_observation = self._build_ego_state_from_agent(matched_agent, ego_state.time_point) + + + # Rebuild timestep and buffer - creating a new observations object with old ego appended. + tracks = [ag for ag in observation.tracked_objects.tracked_objects if ag.metadata.track_token != agent_track_token] + tracks.append(ego_agent_object) + + new_observations.append(DetectionsTracks(tracked_objects=TrackedObjects(tracks))) + faux_ego_obervations.append(faux_ego_observation) + + + output_buffer = SimulationHistoryBuffer(deque(faux_ego_obervations), \ + deque(new_observations), \ + history.sample_interval) + + return output_buffer + + def add_agent_to_scene(self, agent: Agent, goal: StateSE2, timepoint_record: TimePoint): + """ + Adds agent to the scene with a given goal during the simulation runtime. + """ + # TODO: Inject IDM agents (and non-ML agents more broadly) + + self._agents[agent.metadata.track_token] = {'ego_state': self._build_ego_state_from_agent(agent, timepoint_record), \ + 'metadata': agent.metadata, + 'planner': MLPlanner(self.model)} + planner_init = PlannerInitialization( + route_roadblock_ids=self._scenario.get_route_roadblock_ids(), + mission_goal=goal, + map_api=self._scenario.map_api, + ) + + self._agents[agent.metadata.track_token]['planner'].initialize(planner_init)