### Clamp latitude for conic conformal projection.

```The Lambert conic conformal projection extends to infinity along the outer edge
of the projection, and thus the latitude must be clamped either at -π/2 or +π/2
depending on the parallels. Fixes #1802.```
parent 2b148070
 ... ... @@ -4600,7 +4600,12 @@ }, n = φ0 === φ1 ? Math.sin(φ0) : Math.log(cosφ0 / Math.cos(φ1)) / Math.log(t(φ1) / t(φ0)), F = cosφ0 * Math.pow(t(φ0), n) / n; if (!n) return d3_geo_mercator; function forward(λ, φ) { var ρ = abs(abs(φ) - halfπ) < ε ? 0 : F / Math.pow(t(φ), n); if (F > 0) { if (φ < -halfπ + ε) φ = -halfπ + ε; } else { if (φ > halfπ - ε) φ = halfπ - ε; } var ρ = F / Math.pow(t(φ), n); return [ ρ * Math.sin(n * λ), F - ρ * Math.cos(n * λ) ]; } forward.invert = function(x, y) { ... ...
This diff is collapsed.
 ... ... @@ -13,7 +13,9 @@ function d3_geo_conicConformal(φ0, φ1) { if (!n) return d3_geo_mercator; function forward(λ, φ) { var ρ = abs(abs(φ) - halfπ) < ε ? 0 : F / Math.pow(t(φ), n); if (F > 0) { if (φ < -halfπ + ε) φ = -halfπ + ε; } else { if (φ > halfπ - ε) φ = halfπ - ε; } var ρ = F / Math.pow(t(φ), n); return [ ρ * Math.sin(n * λ), F - ρ * Math.cos(n * λ) ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!