import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerTuple from config import markers, colors from memcached_qps_scan import extract_qps_latency import os experiments = [ "memcached_qps_scan.5.15.79-peter.irq_packing.first2.t8.c20", # irq packing "memcached_qps_scan.5.15.79-peter.first4.t8.c20", # vanilla "memcached_qps_scan.5.15.79-peter.kernel_polling.first4.t8.c20", # kernel polling ] experiments_uma = [ "memcached_qps_scan.5.15.79-peter.irq_packing.t8.c20", # irq packing "memcached_qps_scan.5.15.79-peter.t8.c20", # vanilla "memcached_qps_scan.5.15.79-peter.kernel_polling.t8.c20", # kernel polling ] names = [ "IRQ Packing", "Vanilla", "Kernel Polling", ] def show_plot(): plt.cla() data = extract_qps_latency(experiments) data_uma = extract_qps_latency(experiments_uma) p = [] pref = [] for i in range(len(experiments)): k = experiments[i] display_name = names[i] p.append(plt.errorbar([data[k][0][j] / 1000 for j in range(len(data[k][0]))], data[k][1], yerr = data[k][2], capsize = 4, marker = markers[display_name], color = colors[display_name])) k = experiments_uma[i] pref.append(plt.errorbar([data_uma[k][0][j] / 1000 for j in range(len(data_uma[k][0]))], data_uma[k][1], linestyle = 'dotted', color = colors[display_name])) plt.xlabel('QPS (x1000)') plt.ylabel('Latency (99th percentile, μs)') plt.yscale('log') plt.xlim(xmin = 0) p.append((pref[0], pref[1], pref[2])) plt.legend(handles = p, labels = names + [ "reference" ], handler_map = {tuple: HandlerTuple(None)}, handlelength = 4, handleheight = 1.5) if os.getenv('SAVE_FIGURE') != 'true': plt.rcParams.update({'font.size': 16}) plt.show() else: plt.savefig('../data/figs/memcached_qps_scan_numa.png', dpi = 192) show_plot()