diff --git a/CovidAlertVaccinationModel/src/ABM/parameter_planes.jl b/CovidAlertVaccinationModel/src/ABM/parameter_planes.jl index 56f7b5943d9fa968e3c52a8fe447a1f7db324eaf..b6b9bf4870a13f1192c9590904efb86950db063e 100644 --- a/CovidAlertVaccinationModel/src/ABM/parameter_planes.jl +++ b/CovidAlertVaccinationModel/src/ABM/parameter_planes.jl @@ -105,30 +105,30 @@ function plot_parameter_plane(input_fname) - mean_final_size(p) = mean(reduce(merge!,p.final_size_by_age)) + mean_final_size(p) = mean(reduce(merge!,p.final_size_by_age)); + std_final_size(p) = std(reduce(merge!,p.final_size_by_age)) base_outcome = mean_final_size(output_no_app) final_size_map = map(x-> (mean_final_size(x) - base_outcome),output) mean_weighted_degree_change(p,age) = mean(p.avg_weighted_degree_of_vaccinators[age])-mean(p.avg_weighted_degree[age]) weighted_degree_map = [map(p -> mean_weighted_degree_change(p,i),output) for i in 1:3] - mean_notifications(p) = mean(reduce(merge!,p.daily_total_notifications)) - notifications_map = map(mean_notifications,output) + cs = cgrad(:blues) - datamaps = (weighted_degree_map..., final_size_map,notifications_map) + datamaps = (weighted_degree_map..., final_size_map,map(std_final_size,output_data)) fnames = [ "wdg_change_Y.pdf", "wdg_change_M.pdf", "wdg_change_O.pdf", "final_size_change.pdf", - "notifications.pdf" + "final_size_standard_dev.pdf" ] titles = [ "Average w. deg. of vaccinators minus average w. deg., Y", "Average w. deg. of vaccinators minus average w. deg., M", "Average w. deg. of vaccinators minus average w. deg., O", "Effect of notifications on tot. infections", - "total notifications" + "Standard deviation from the mean of total infection size" ] for (fname,title,datamap) in zip(fnames,titles,datamaps) p = heatmap(var_ranges[1],var_ranges[2],datamap; title, xlabel = vars[1], ylabel = vars[2], seriescolor=cs, size = (600,400))