diff --git a/IntervalsModel/Manifest.toml b/IntervalsModel/Manifest.toml
index b631eb5ad75dd8b834f83f549385f62ae064f0b9..aae98665fa39cfd0a2853329a0ec1cc328d3efbd 100644
--- a/IntervalsModel/Manifest.toml
+++ b/IntervalsModel/Manifest.toml
@@ -184,6 +184,12 @@ version = "1.0.0"
 deps = ["Printf"]
 uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
 
+[[DefaultApplication]]
+deps = ["InteractiveUtils"]
+git-tree-sha1 = "fc2b7122761b22c87fec8bf2ea4dc4563d9f8c24"
+uuid = "3f0dd361-4fe0-5fc6-8523-80b14ec94d85"
+version = "1.0.0"
+
 [[DefineSingletons]]
 git-tree-sha1 = "77b4ca280084423b728662fe040e5ff8819347c5"
 uuid = "244e2a9f-e319-4986-a169-4d1fe445cd52"
@@ -203,6 +209,12 @@ git-tree-sha1 = "f0e06a5b5ccda38e2fb8f59d91316e657b67047d"
 uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
 version = "0.24.12"
 
+[[DocStringExtensions]]
+deps = ["LibGit2", "Markdown", "Pkg", "Test"]
+git-tree-sha1 = "50ddf44c53698f5e784bbebb3f4b21c5807401b1"
+uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
+version = "0.8.3"
+
 [[Downloads]]
 deps = ["ArgTools", "LibCURL", "NetworkOptions"]
 uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
@@ -684,6 +696,18 @@ git-tree-sha1 = "95a4038d1011dfdbde7cecd2ad0ac411e53ab1bc"
 uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
 version = "0.10.1"
 
+[[PGFPlotsX]]
+deps = ["ArgCheck", "DataStructures", "Dates", "DefaultApplication", "DocStringExtensions", "MacroTools", "Parameters", "Requires", "Tables"]
+git-tree-sha1 = "1adde3d07cce96b6a3bb88572612db4bd9d6153b"
+uuid = "8314cec4-20b6-5062-9cdb-752b83310925"
+version = "1.2.10"
+
+[[Parameters]]
+deps = ["OrderedCollections", "UnPack"]
+git-tree-sha1 = "2276ac65f1e236e0a6ea70baff3f62ad4c625345"
+uuid = "d96e819e-fc66-5662-9728-84c9c7592b0a"
+version = "0.12.2"
+
 [[Parsers]]
 deps = ["Dates"]
 git-tree-sha1 = "50c9a9ed8c714945e01cd53a21007ed3865ed714"
diff --git a/IntervalsModel/Project.toml b/IntervalsModel/Project.toml
index 58ade50c253cbfd3ccc4dc94a0ce5c11a6aca850..da17ab876bfd66563f04a8ebba678cc559be09d9 100644
--- a/IntervalsModel/Project.toml
+++ b/IntervalsModel/Project.toml
@@ -12,7 +12,9 @@ Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
 Intervals = "d8418881-c3e1-53bb-8760-2df7ec849ed5"
 JLSO = "9da8a3cd-07a3-59c0-a743-3fdc52c30d11"
 KissABC = "9c9dad79-530a-4643-a18b-2704674d4108"
+LaTeXStrings = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
 ModularIntervals = "1e07f51d-1de3-4a1c-a782-ac336877d585"
+PGFPlotsX = "8314cec4-20b6-5062-9cdb-752b83310925"
 Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
 RandomNumbers = "e6cf234a-135c-5ec9-84dd-332b85af5143"
 Serialization = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
diff --git a/IntervalsModel/plots/hh.pdf b/IntervalsModel/plots/hh.pdf
index ff07d86f1768d78ebcb85ba23d876fd21400036e..e4475483c8bb20c1286e6008921c7c46baff0758 100644
Binary files a/IntervalsModel/plots/hh.pdf and b/IntervalsModel/plots/hh.pdf differ
diff --git a/IntervalsModel/plots/rest.pdf b/IntervalsModel/plots/rest.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..1b5c6eb890568ffb59e5963a4c9d1ab6f4c8bd42
Binary files /dev/null and b/IntervalsModel/plots/rest.pdf differ
diff --git a/IntervalsModel/plots/ws.pdf b/IntervalsModel/plots/ws.pdf
index ae202cdaa2684da2bc800d06d34a630bd163ee7b..d46cb378594dd87fb76401b8ec447b228576f970 100644
Binary files a/IntervalsModel/plots/ws.pdf and b/IntervalsModel/plots/ws.pdf differ
diff --git a/IntervalsModel/simulation_data/rest.dat b/IntervalsModel/simulation_data/rest.dat
new file mode 100644
index 0000000000000000000000000000000000000000..ed9fae52b48b1c7c870aa9a0062a38ccddc8479e
Binary files /dev/null and b/IntervalsModel/simulation_data/rest.dat differ
diff --git a/IntervalsModel/simulation_data/ws.dat b/IntervalsModel/simulation_data/ws.dat
index 7c51dccc9f356d9700754b1d2ec1da35dabfb87a..6bb21aa2aa083ff4534e8c7ec019f774982de332 100644
Binary files a/IntervalsModel/simulation_data/ws.dat and b/IntervalsModel/simulation_data/ws.dat differ
diff --git a/IntervalsModel/src/IntervalsModel.jl b/IntervalsModel/src/IntervalsModel.jl
index 929c5c12de8fd17d70b87fa056638cea5a828b06..c9e6b9a555e7dbbd06b4683e5d2f3c86f7dbc0fa 100644
--- a/IntervalsModel/src/IntervalsModel.jl
+++ b/IntervalsModel/src/IntervalsModel.jl
@@ -9,7 +9,7 @@ using Distributions
 using CovidAlertVaccinationModel
 using ZeroWeightedDistributions
 const PACKAGE_FOLDER = dirname(dirname(pathof(IntervalsModel)))
-
+using DataStructures:OrderedDict
 using Serialization
 
 const rng = Xoroshiro128Plus(1)
@@ -31,7 +31,7 @@ using Plots
 
 const μ_bounds = (6,12*6) 
 const σ_bounds = (1,48)
-const α_bounds = (0.0,1.0) 
+const α_bounds = (0.0,0.1) 
 
 function do_hh(particles)
     dists = [
@@ -63,6 +63,23 @@ function do_ws(particles)
     @show bounds_list
     bayesian_estimate("ws",err_ws,dists,bounds_list,particles)
 
+end
+function do_rest(particles)
+    dists = [
+        ZWDist{Normal},
+        ZWDist{Poisson},
+        ZWDist{Weibull}
+    ]
+
+    # Set parameter bounds for fitting
+    bounds_list = map(l -> vcat(l...),[
+        [[α_bounds for i = 1:6],[μ_bounds for i = 1:6], [σ_bounds for i = 1:6]],
+        [[α_bounds for i = 1:6],[μ_bounds for i = 1:6]],
+        [[α_bounds for i = 1:6],[μ_bounds for i = 1:6], [σ_bounds for i = 1:6]],
+    ])
+    @show bounds_list
+    bayesian_estimate("rest",err_rest,dists,bounds_list,particles)
+
 end
 
 function bayesian_estimate(fname,err_func,dists,bounds_list,particles)
@@ -70,22 +87,27 @@ function bayesian_estimate(fname,err_func,dists,bounds_list,particles)
         init = [b[1] for b in bounds]
         priors = Factored([Uniform(l,u) for (l,u) in bounds]...) #assume uniform priors
 
-        # @btime err_ws($init,$dist) #compute benchmark of the error function, not rly necessary
-        # @btime err_ws($init,$dist) #compute benchmark of the error function, not rly necessary
+        @btime err_ws($init,$dist) #compute benchmark of the error function, not rly necessary
         
-        out = smc(priors,p -> err_func(p, dist), verbose=true, nparticles=particles, alpha=0.95, parallel = true) #apply sequential monte carlo with 200 particles
+        out = smc(priors,p -> err_func(p, dist), verbose=true, nparticles=particles,  alpha=0.99, M = 1,epstol = 0.1,  parallel = true) #apply sequential monte carlo with 200 particles
         
         return dist => out
-    end |> Dict
+    end |> OrderedDict
+    display(data_pairs)
     serialize(joinpath(PACKAGE_FOLDER,"simulation_data","$fname.dat"),data_pairs)
 end
 
 function plot_estimates()
     data = deserialize(joinpath(PACKAGE_FOLDER,"simulation_data","ws.dat"))
     plot_dists("ws",collect(keys(data)),collect(values(data)))
+    display(collect(values(data)))
 
     data = deserialize(joinpath(PACKAGE_FOLDER,"simulation_data","hh.dat"))
     plot_dists("hh",collect(keys(data)),collect(values(data)))
+
+
+    data = deserialize(joinpath(PACKAGE_FOLDER,"simulation_data","rest.dat"))
+    plot_dists("rest",collect(keys(data)),collect(values(data)))
 end
 
 
diff --git a/IntervalsModel/src/plotting_functions.jl b/IntervalsModel/src/plotting_functions.jl
index c60cba2e7b913d731aa34086bc41332c0b6772a6..6d25eb3070042389699a853c8f0f7d3b30f6f178 100644
--- a/IntervalsModel/src/plotting_functions.jl
+++ b/IntervalsModel/src/plotting_functions.jl
@@ -1,9 +1,15 @@
+using LaTeXStrings
+using Plots
+
+default(dpi = 300)
+default(framestyle = :box)
+pgfplotsx()
 function plot_dists(fname,dist_constructors,data)
     p_estimate_as_arrays = map(d -> get_params(d.P),data)
     p_matrix = map(x -> plot(),p_estimate_as_arrays[1])
-    for (dist_constructor,p_estimate) in zip(dist_constructors,p_estimate_as_arrays)
-        for i in YOUNG:OLD, j in YOUNG:OLD
-            @show p_estimate[i,j]
+    ymo = ["Y","M","O"]
+    for i in YOUNG:OLD, j in YOUNG:OLD
+        for (dist_constructor,p_estimate) in zip(dist_constructors,p_estimate_as_arrays)
             dists =  map(p -> p.particles, p_estimate[i,j]) |>
                         t -> zip(t...) |>
                         l -> map(t -> dist_constructor(t...),l) 
@@ -13,20 +19,33 @@ function plot_dists(fname,dist_constructors,data)
             err_up = quantile.(dist_pts,0.95)
             plot!(p_matrix[i,j] ,0:144,mean_dat; ribbon = ( mean_dat .- err_down,err_up .- mean_dat),legend = false,label = string(dist_constructor))
         end
+        annotate!(p_matrix[i,j],compute_x_pos(p_matrix[i,j]),compute_y_pos(p_matrix[i,j]), Plots.text("$(ymo[i])→$(ymo[j])", :left, 10))
     end
     plot!(p_matrix[end,1]; legend = true)
-    p = plot(p_matrix..., size = (600,400))
+    p = plot(p_matrix..., size = (800,600))
     savefig(p,joinpath(PACKAGE_FOLDER,"plots", "$fname.pdf"))
 end
+compute_x_pos(p) = xlims(p)[1] + 0.02*((xlims(p)[2]  - xlims(p)[1]))
+compute_y_pos(p) = ylims(p)[2] - 0.11*((ylims(p)[2]  - ylims(p)[1]))
 function plot_posteriors(fname,parameter_names,data)
     for i in 1:length(data.P)
         a = stephist(
             data.P[i].particles;
             normalize = true,
-            title = i <=6 ? "μ_$i" : "σ_$i" 
+            title = "$(parameter_names[div(i,6)])_(i % 6)"
         )
         push!(p_list,a)
     end
     p = plot(p_list...)
-    savefig(p,"$norm.png")
-end
\ No newline at end of file
+    savefig(p,"$fname.png")
+end
+# function add_subplot_letters!(plot_list; pos = :top)
+#     for (i,sp) in enumerate(plot_list)
+#         letter = string(Char(i+96))
+#         if pos == :top
+#             annotate!(sp,xlims(sp)[1] + 0.02*((xlims(sp)[2]  - xlims(sp)[1])),ylims(sp)[2] - 0.11*((ylims(sp)[2]  - ylims(sp)[1])), Plots.text("$letter)", :left, 18))
+#         elseif pos == :bottom
+#             annotate!(sp,xlims(sp)[1] + 0.02*((xlims(sp)[2]  - xlims(sp)[1])),ylims(sp)[1] + 0.11*((ylims(sp)[2]  - ylims(sp)[1])), Plots.text("$letter)", :left, 18))
+#         end
+#     end
+# end
\ No newline at end of file
diff --git a/IntervalsModel/src/ws_durations_model.jl b/IntervalsModel/src/ws_durations_model.jl
index 735a8f2a7e2c109ad1ec4110ef41e4ed5810fa82..e27869e9c7b83827526c1619930f740da32458a9 100644
--- a/IntervalsModel/src/ws_durations_model.jl
+++ b/IntervalsModel/src/ws_durations_model.jl
@@ -5,10 +5,23 @@ const ws_data = (
     M = CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/WS/WorkschoolDataM.csv") |> Tables.matrix |> x -> dropdims(x;dims = 2),
     O = CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/WS/WorkschoolDataO.csv") |> Tables.matrix |> x -> dropdims(x;dims = 2),
 )
+using KernelDensity
+const kerneldensity_data = (
+    Y = kde(IntervalsModel.ws_data.Y),
+    M = kde(IntervalsModel.ws_data.M),
+    O = kde(IntervalsModel.ws_data.O),
+)
+const rest_data = (
+    Y = CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/Rest/RDataY.csv") |> Tables.matrix |> x -> dropdims(x;dims = 2),
+    M = CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/Rest/RDataM.csv") |> Tables.matrix |> x -> dropdims(x;dims = 2),
+    O = CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/Rest/RDataO.csv") |> Tables.matrix |> x -> dropdims(x;dims = 2),
+)
 const comparison_samples = 10_000
 
 ws_distributions = CovidAlertVaccinationModel.initial_workschool_mixing_matrix
 
+rest_distributions = CovidAlertVaccinationModel.initial_rest_mixing_matrix
+
 #error function
 function err_ws(p,dist)
     params = get_params(p)
@@ -16,9 +29,37 @@ function err_ws(p,dist)
     age_dists = [dist(params[i,j]...) for i in YOUNG:OLD, j in YOUNG:OLD]
     sample_list = zeros(comparison_samples)
     ws_samples = (
-        Y = sample(rng, ws_data.Y, comparison_samples),
-        M = sample(rng, ws_data.M, comparison_samples),
-        O = sample(rng, ws_data.O, comparison_samples),
+        Y = sample(rng, rest_data.Y, comparison_samples),
+        M = sample(rng, rest_data.M, comparison_samples),
+        O = sample(rng, rest_data.O, comparison_samples),
+    )
+    errsum = 0
+    for age_sample in YOUNG:OLD
+        for age_j in YOUNG:OLD #for a given age_sample loop over possible contact ages
+            if neighourhoods[age_sample,age_j] > 0
+                durs = trunc.(Int,rand(rng,age_dists[age_sample,age_j],neighourhoods[age_sample,age_j])) .% durmax
+                # display(durs)
+                tot_dur_sample!(sample_list,cnst_hh.Sparam,durs)
+                kde_est = kde(sample_list)
+                # err =  (1 - pvalue(KSampleADTest(ws_samples[age_sample],sample_list)))^2 #need to maximize probability of null hypothesis, not rly valid but everyone does it so idk
+                errsum += mapreduce(+,0:0.05:durmax) do i
+                    return (pdf(kde_est,i) - pdf(kerneldensity_data[age_sample],i))^2
+                end
+            end
+        end
+    end
+    return errsum
+end
+
+function err_rest(p,dist)
+    params = get_params(p)
+    neighourhoods = rand.(rng,rest_distributions)
+    age_dists = [dist(params[i,j]...) for i in YOUNG:OLD, j in YOUNG:OLD]
+    sample_list = zeros(comparison_samples)
+    rest_samples = (
+        Y = sample(rng, rest_data.Y, comparison_samples),
+        M = sample(rng, rest_data.M, comparison_samples),
+        O = sample(rng, rest_data.O, comparison_samples),
     )
     errsum = 0
     for age_sample in YOUNG:OLD
@@ -27,7 +68,7 @@ function err_ws(p,dist)
                 durs = trunc.(Int,rand(rng,age_dists[age_sample,age_j],neighourhoods[age_sample,age_j])) .% durmax
                 # display(durs)
                 tot_dur_sample!(sample_list,cnst_hh.Sparam,durs)
-                err =  1 - pvalue(KSampleADTest(ws_samples[age_sample],sample_list)) #need to maximize probability of null hypothesis, not rly valid but everyone does it so idk
+                err =  1 - pvalue(KSampleADTest(rest_samples[age_sample],sample_list)) #need to maximize probability of null hypothesis, not rly valid but everyone does it so idk
                 errsum += err
             end
         end
diff --git a/ws.pdf b/ws.pdf
deleted file mode 100644
index 0273814a404871a726d8147ad6b4745d5d570619..0000000000000000000000000000000000000000
Binary files a/ws.pdf and /dev/null differ