function contact_weight(p, contact_time) return 1 - (1-p)^contact_time end function Φ(payoff,β) return 1 / (exp(-1*β*payoff)) end Base.@propagate_inbounds @views function update_alert_durations!(t,modelsol) #remove Base.@propagate_inbounds if you get segfaults @unpack notification_parameter = modelsol.params @unpack time_of_last_alert, app_user_index,inf_network,covid_alert_times,app_user = modelsol for (i,node) in enumerate(modelsol.app_user_index), mixing_graph in inf_network.graph_list[t] for j in 2:14 covid_alert_times[j-1,i] = covid_alert_times[j,i] #shift them all back end for j in neighbors(mixing_graph.g,node) if app_user[j] covid_alert_times[end,i] += get_weight(mixing_graph,GraphEdge(node,j)) #add the contact times for today to the back end end covid_alert_total_exposures = 1 - (1 - notification_parameter) ^ sum(covid_alert_times[:,i]) if rand(RNG) < covid_alert_total_exposures time_of_last_alert[i] = t end end end Base.@propagate_inbounds @views function update_infection_state!(t,modelsol) #remove Base.@propagate_inbounds if you get segfaults @unpack base_transmission_probability,immunization_loss_prob,recovery_rate = modelsol.params @unpack u_inf,u_vac,u_next_inf,u_next_vac,demographics,inf_network,status_totals = modelsol function agent_transition!(node, from::AgentStatus,to::AgentStatus) status_totals[Int(from)] -= 1 status_totals[Int(to)] += 1 u_next_inf[node] = to end u_next_inf .= u_inf for i in 1:modelsol.nodes agent_status = u_inf[i] is_vaccinator = u_vac[i] agent_demo = demographics[i] if agent_status == Susceptible if is_vaccinator agent_transition!(i, Susceptible,Immunized) else for mixing_graph in inf_network.graph_list[t] for j in neighbors(mixing_graph.g,i) if u_inf[j] == Infected && u_next_inf[i] != Infected if rand(RNG) < contact_weight(base_transmission_probability,get_weight(mixing_graph,GraphEdge(i,j))) agent_transition!(i, Susceptible,Infected) end end end end end elseif agent_status == Infected if rand(RNG) < recovery_rate agent_transition!(i, Infected,Recovered) end elseif agent_status == Immunized if rand(RNG) < immunization_loss_prob agent_transition!(i, Immunized,Susceptible) end end end # display(u_next_inf) end Base.@propagate_inbounds @views function update_vaccination_opinion_state!(t,modelsol,total_infections) #remove Base.@propagate_inbounds if you get segfaults @unpack π_base, η,γ, κ, ω, ρ, ω_en,ρ_en,γ,β = modelsol.params @unpack demographics,time_of_last_alert, nodes, soc_network,u_vac,u_next_vac,app_user,app_user_list = modelsol app_user_pointer = 0 for i in 1:nodes vac_payoff = 0 soc_nbrs_vac = @MArray [0,0,0] soc_nbrs_nonvac = 0 num_soc_nbrs = 0 for sc_g in soc_network.graph_list[t] soc_nbrs = neighbors(sc_g.g,i) num_soc_nbrs += length(soc_nbrs) for nbr in soc_nbrs if u_vac[nbr] soc_nbrs_vac[Int(demographics[nbr])] += 1 else soc_nbrs_nonvac += 1 end end end vac_payoff += π_base + dot(ρ,soc_nbrs_vac) + total_infections*ω + ifelse(num_soc_nbrs> 0, κ * ((sum(soc_nbrs_vac) - soc_nbrs_nonvac/num_soc_nbrs)),0) if app_user[i] && time_of_last_alert[app_user_list[i]]>=0 vac_payoff += γ^(-1*(t - time_of_last_alert[app_user_list[i]]))* (η + dot(ρ_en,soc_nbrs_vac) + total_infections*ω_en) end if u_vac[i] if rand(RNG) < 1 - Φ(vac_payoff,β) u_next_vac[i] = !u_vac[i] else u_next_vac[i] = u_vac[i] end else if rand(RNG) < Φ(vac_payoff,β) u_next_vac[i] = !u_vac[i] else u_next_vac[i] = u_vac[i] end end end end function agents_step!(t,modelsol) remake!(modelsol.inf_network,modelsol.index_vectors,modelsol.ws_matrix_tuple.daily) remake!(modelsol.soc_network,modelsol.index_vectors,modelsol.rest_matrix_tuple.daily) for network in modelsol.inf_network.graph_list[t] sample_mixing_graph!(network) #get new contact weights end update_alert_durations!(t,modelsol) update_vaccination_opinion_state!(t,modelsol,modelsol.status_totals[Int(Infected)]) update_infection_state!(t,modelsol) modelsol.u_vac .= modelsol.u_next_vac modelsol.u_inf .= modelsol.u_next_inf end function solve!(modelsol,recordings...) for t in 1:modelsol.sim_length #advance agent states based on the new network for recording in recordings record!(t,modelsol,recording) end agents_step!(t,modelsol) end end