Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Open sidebar
Qing Guo
Bespin
Commits
d06a4179
Commit
d06a4179
authored
Feb 25, 2021
by
cs451
Browse files
multi source sequential pagerank added
parent
a06ec81b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
26 additions
and
11 deletions
+26
-11
src/main/java/io/bespin/java/mapreduce/pagerank/SequentialPersonalizedPageRank.java
...va/mapreduce/pagerank/SequentialPersonalizedPageRank.java
+26
-11
No files found.
src/main/java/io/bespin/java/mapreduce/pagerank/SequentialPersonalizedPageRank.java
View file @
d06a4179
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
* limitations under the License.
* limitations under the License.
*/
*/
package
io.bespin.java.mapreduce.pagerank
;
package
ca.uwaterloo.cs451.a4
;
import
com.google.common.base.Function
;
import
com.google.common.base.Function
;
import
edu.uci.ics.jung.algorithms.cluster.WeakComponentClusterer
;
import
edu.uci.ics.jung.algorithms.cluster.WeakComponentClusterer
;
...
@@ -32,10 +32,11 @@ import java.io.IOException;
...
@@ -32,10 +32,11 @@ import java.io.IOException;
import
java.io.InputStreamReader
;
import
java.io.InputStreamReader
;
import
java.util.PriorityQueue
;
import
java.util.PriorityQueue
;
import
java.util.Set
;
import
java.util.Set
;
import
java.util.ArrayList
;
/**
/**
* <p>
* <p>
* Program that computes
personalized
PageRank for a graph using the <a
* Program that computes PageRank for a graph using the <a
* href="https://github.com/jrtom/jung">JUNG</a> package. Program takes two command-line
* href="https://github.com/jrtom/jung">JUNG</a> package. Program takes two command-line
* arguments: the first is a file containing the graph data, and the second is the random jump
* arguments: the first is a file containing the graph data, and the second is the random jump
* factor (a typical setting is 0.15).
* factor (a typical setting is 0.15).
...
@@ -49,8 +50,10 @@ import java.util.Set;
...
@@ -49,8 +50,10 @@ import java.util.Set;
* lines will simply contain one token, the source node id).
* lines will simply contain one token, the source node id).
* </p>
* </p>
*
*
* @author Ali Abedi
* @author Jimmy Lin
* @author Jimmy Lin
*/
*/
public
class
SequentialPersonalizedPageRank
{
public
class
SequentialPersonalizedPageRank
{
private
SequentialPersonalizedPageRank
()
{}
private
SequentialPersonalizedPageRank
()
{}
...
@@ -58,15 +61,18 @@ public class SequentialPersonalizedPageRank {
...
@@ -58,15 +61,18 @@ public class SequentialPersonalizedPageRank {
@Option
(
name
=
"-input"
,
metaVar
=
"[path]"
,
required
=
true
,
usage
=
"input path"
)
@Option
(
name
=
"-input"
,
metaVar
=
"[path]"
,
required
=
true
,
usage
=
"input path"
)
String
input
;
String
input
;
@Option
(
name
=
"-source"
,
metaVar
=
"[node]"
,
required
=
true
,
@Option
(
name
=
"-source
s
"
,
metaVar
=
"[node]"
,
required
=
true
,
usage
=
"source node
(i.e., destination of the random jump)
"
)
usage
=
"source node
s set. Comma seperated.
"
)
String
source
;
String
source
s
;
@Option
(
name
=
"-jump"
,
metaVar
=
"[num]"
,
usage
=
"random jump factor"
)
@Option
(
name
=
"-jump"
,
metaVar
=
"[num]"
,
usage
=
"random jump factor"
)
float
alpha
=
0.15f
;
float
alpha
=
0.15f
;
}
}
public
static
void
main
(
String
[]
argv
)
throws
IOException
{
public
static
void
main
(
String
[]
argv
)
throws
IOException
{
// Keeping track of source nodes
ArrayList
sources
=
new
ArrayList
();
final
Args
args
=
new
Args
();
final
Args
args
=
new
Args
();
CmdLineParser
parser
=
new
CmdLineParser
(
args
,
ParserProperties
.
defaults
().
withUsageWidth
(
100
));
CmdLineParser
parser
=
new
CmdLineParser
(
args
,
ParserProperties
.
defaults
().
withUsageWidth
(
100
));
...
@@ -78,6 +84,12 @@ public class SequentialPersonalizedPageRank {
...
@@ -78,6 +84,12 @@ public class SequentialPersonalizedPageRank {
System
.
exit
(-
1
);
System
.
exit
(-
1
);
}
}
String
[]
tmp
=
args
.
sources
.
split
(
","
);
for
(
int
i
=
0
;
i
<
tmp
.
length
;
i
++)
{
sources
.
add
(
tmp
[
i
]);
}
int
edgeCnt
=
0
;
int
edgeCnt
=
0
;
DirectedSparseGraph
<
String
,
Integer
>
graph
=
new
DirectedSparseGraph
<>();
DirectedSparseGraph
<
String
,
Integer
>
graph
=
new
DirectedSparseGraph
<>();
...
@@ -94,12 +106,15 @@ public class SequentialPersonalizedPageRank {
...
@@ -94,12 +106,15 @@ public class SequentialPersonalizedPageRank {
}
}
data
.
close
();
data
.
close
();
if
(!
graph
.
containsVertex
(
args
.
source
))
{
for
(
int
i
=
0
;
i
<
sources
.
size
();
i
++){
System
.
err
.
println
(
"Error: source node not found in the graph!"
);
if
(!
graph
.
containsVertex
((
String
)
sources
.
get
(
i
)))
{
System
.
exit
(-
1
);
System
.
err
.
println
(
"Error: source node not found in the graph!"
);
System
.
exit
(-
1
);
}
}
}
WeakComponentClusterer
<
String
,
Integer
>
clusterer
=
new
WeakComponentClusterer
<>();
WeakComponentClusterer
<
String
,
Integer
>
clusterer
=
new
WeakComponentClusterer
<>();
Set
<
Set
<
String
>>
components
=
clusterer
.
apply
(
graph
);
Set
<
Set
<
String
>>
components
=
clusterer
.
apply
(
graph
);
...
@@ -107,16 +122,16 @@ public class SequentialPersonalizedPageRank {
...
@@ -107,16 +122,16 @@ public class SequentialPersonalizedPageRank {
System
.
out
.
println
(
"Number of edges: "
+
graph
.
getEdgeCount
());
System
.
out
.
println
(
"Number of edges: "
+
graph
.
getEdgeCount
());
System
.
out
.
println
(
"Number of nodes: "
+
graph
.
getVertexCount
());
System
.
out
.
println
(
"Number of nodes: "
+
graph
.
getVertexCount
());
System
.
out
.
println
(
"Random jump factor: "
+
args
.
alpha
);
System
.
out
.
println
(
"Random jump factor: "
+
args
.
alpha
);
System
.
out
.
println
(
"Source nodes: "
+
args
.
sources
);
// Compute personalized PageRank.
// Compute personalized PageRank.
PageRankWithPriors
<
String
,
Integer
>
ranker
=
new
PageRankWithPriors
<>(
graph
,
PageRankWithPriors
<
String
,
Integer
>
ranker
=
new
PageRankWithPriors
<>(
graph
,
new
Function
<
String
,
Double
>()
{
new
Function
<
String
,
Double
>()
{
@Override
@Override
public
Double
apply
(
String
vertex
)
{
public
Double
apply
(
String
vertex
)
{
return
vertex
.
equals
(
args
.
source
)
?
1.0
:
0
;
return
sources
.
contains
(
vertex
)
?
1.0
/
(
float
)
sources
.
size
()
:
0
;
}
}
},
args
.
alpha
);
},
args
.
alpha
);
// Note that the Altiscale cluster is still on Java 7, so we don't have lambdas.
ranker
.
evaluate
();
ranker
.
evaluate
();
// Use priority queue to sort vertices by PageRank values.
// Use priority queue to sort vertices by PageRank values.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment