""" Authors: Pratik Bhatu. Copyright: Copyright (c) 2021 Microsoft Research Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import tempfile import sys import os import shutil import re sys.path.append(os.path.join(os.path.dirname(__file__), "..")) import CompilerScripts.parse_config as parse_config import CompileTFGraph import numpy as np import subprocess import threading class Config: def __init__(self, mode): self.config = { "model_name": "model.pb", "scale": 23, "bitlength": 64, "save_weights": True, } if mode == "CPP": self.config["target"] = "CPP" elif mode == "3PC": self.config["target"] = "PORTHOS" elif mode == "2PC_OT": self.config["target"] = "PORTHOS2PC" self.config["bitlength"] = 41 self.config["scale"] = 12 self.config["backend"] = "OT" elif mode == "2PC_HE": self.config["target"] = "PORTHOS2PC" self.config["bitlength"] = 41 self.config["scale"] = 12 self.config["backend"] = "HE" else: assert False, "Mode has to be one of CPP/3PC/2PC_OT/2PC_HE" def add_input(self, tensor_op): input_name = tensor_op.op.name shape = tensor_op.shape.as_list() shape_string = ",".join(map(str, shape)) inputs = self.config.get("input_tensors") if inputs == None: self.config["input_tensors"] = {input_name: shape_string} else: self.config["input_tensors"][input_name] = shape_string return self def add_output(self, tensor_op): output_name = tensor_op.op.name outputs = self.config.get("output_tensors") if outputs == None: self.config["output_tensors"] = [output_name] else: self.config["output_tensors"].append(output_name) return self def get_params(config): return parse_config.parse_config(config) def make_dir(path): if os.path.exists(path): shutil.rmtree(path, ignore_errors=True) else: os.mkdir(path) return def save_graph(graph_def, config, test_dir): fname = config["model_name"] fpath = os.path.join(test_dir, fname) with open(fpath, "wb") as f: f.write(graph_def.SerializeToString()) print("\n\nfile name: ", f.name, "\n\n\n") config["model_name"] = fpath return def convert_raw_output_to_np(filename, bitlength, scale): matcher = re.compile(r"[-]?[0-9]+") scaled_array = [] with open(filename, "r") as f: for line in f: match = matcher.fullmatch(line.rstrip()) if match: unsigned_number = int(match.group(0)) number = ( unsigned_number if (unsigned_number < 2 ** (bitlength - 1)) else unsigned_number - 2 ** bitlength ) scaled_array.append(float(number) / (2 ** scale)) return np.array(scaled_array) class Program: def __init__(self, program_path, model_weight_path, params, test_dir): self.program_path = program_path self.model_weight_path = model_weight_path self.scale = params["scale"] self.bitlength = params["bitlength"] self.target = params["target"] self.test_dir = test_dir def run(self, inputs, timeoutSeconds): # scale input and dump to file inputs_scaled = os.path.join( self.test_dir, "input_fixedpt_scale_" + str(self.scale) + ".inp" ) with open(inputs_scaled, "w") as ff: for i in inputs: for xx in np.nditer(i, order="C"): ff.write(str(int(xx * (1 << self.scale))) + " ") ff.write("\n") raw_output = os.path.join(self.test_dir, "raw_output") if self.target == "CPP": os.system( "cat {inputs} {weights} | {program} > {output}".format( program=self.program_path, inputs=inputs_scaled, weights=self.model_weight_path, output=raw_output, ) ) elif self.target == "PORTHOS": util_dir = os.path.dirname(os.path.abspath(__file__)) porthos_dir = os.path.join(util_dir, "..", "..", "Porthos") ip_addr = os.path.join(porthos_dir, "files", "addresses") keys_dir = os.path.join(porthos_dir, "files", "keys") client_cmd = ( "{program} 0 {ip_addr_file} {keys_dir} < {input} > {output}".format( program=self.program_path, ip_addr_file=ip_addr, input=inputs_scaled, output=raw_output, keys_dir=keys_dir, ) ) server_cmd = "{program} 1 {ip_addr_file} {keys_dir} < {input}".format( program=self.program_path, ip_addr_file=ip_addr, input=self.model_weight_path, keys_dir=keys_dir, ) party2_cmd = "{program} 2 {ip_addr_file} {keys_dir}".format( program=self.program_path, ip_addr_file=ip_addr, keys_dir=keys_dir ) commands = [client_cmd, server_cmd, party2_cmd] procs = [subprocess.Popen(i, shell=True) for i in commands] for p in procs: try: p.wait(timeoutSeconds) except subprocess.TimeoutExpired: p.kill() elif self.target == "PORTHOS2PC": util_dir = os.path.dirname(os.path.abspath(__file__)) sci_dir = os.path.join(util_dir, "..", "..", "SCI") port = 1234 client_cmd = "{program} r=2 p={port} < {input} > {output}".format( program=self.program_path, port=port, input=inputs_scaled, output=raw_output, ) server_cmd = "{program} r=1 p={port} < {input} > /dev/null".format( program=self.program_path, port=port, input=self.model_weight_path, output=raw_output, ) commands = [client_cmd, server_cmd] procs = [subprocess.Popen(i, shell=True) for i in commands] for p in procs: try: p.wait(timeoutSeconds) except subprocess.TimeoutExpired: p.kill() return convert_raw_output_to_np(raw_output, self.bitlength, self.scale) class Compiler: def __init__(self, graph, config, test_dir): self.graph_def = graph.as_graph_def() self.config = config.config self.test_dir = test_dir def compile_and_run(self, inputs, timeoutSeconds=40): save_graph(self.graph_def, self.config, self.test_dir) params = get_params(self.config) print(params) (output_program, model_weight_file) = CompileTFGraph.generate_code( params, debug=False ) prog = Program(output_program, model_weight_file, params, self.test_dir) output = prog.run(inputs, timeoutSeconds) return output def assert_almost_equal(tf_output, mpc_tensor, precision): if tf_output.shape == (0,): return np.testing.assert_almost_equal(tf_output.flatten(), mpc_tensor, decimal=precision) return