diff --git a/main_lost.py b/main_lost.py index e89e09a5d25e11cde29cb914465f9ff75151a6cb..5db52cf6473f053710559ec2d22eafd8c785864d 100755 --- a/main_lost.py +++ b/main_lost.py @@ -334,12 +334,6 @@ if __name__ == "__main__": if args.no_evaluation: continue - # Initialize variables for AP50 calculation - tp = 0 - fp = 0 - total_gt_boxes = len(gt_bbxs) - ap50 = 0 - # Compare prediction to GT boxes for pred in preds: if len(preds) == 0: @@ -351,31 +345,19 @@ if __name__ == "__main__": ious = bbox_iou(torch.from_numpy(pred), torch.from_numpy(np.asarray(gt_bbxs))) # TODO: This calculates the corloc + # we need to calculate the AP50 if torch.any(ious >= 0.50): #corloc[im_id] = 1 corloc[im_id] = 0 for i in ious: if i >= 0.50: - corloc[im_id] += 1 - - # Count true positives and false positives at IoU threshold of 0.5 - if torch.any(ious >= 0.50): - tp += 1 - else: - fp += 1 + corloc[im_id] += 1 cnt += len(gt_bbxs) if cnt % 50 == 0: pbar.set_description(f"Found {int(np.sum(corloc))}/{cnt}") - # Calculate precision and recall at IoU threshold of 0.5 - precision = tp / (tp + fp) - recall = tp / total_gt_boxes - - # Calculate AP50 as average precision at IoU threshold of 0.5 - ap50 = precision * recall - print(f"AP50: {ap50:.2f}") # Save predicted bounding boxes if args.save_predictions: