From 8fc57a857ed53fac5d7f47ac6a2f45ad05273316 Mon Sep 17 00:00:00 2001 From: Akinmukomi Oluwaseun <sakinmukomi@seamfix.com> Date: Wed, 29 Mar 2023 17:59:26 +0100 Subject: [PATCH] Revert "- Added code for ap50 calculation" This reverts commit 99564e184f0206d0d994ec01e71335ee7c76756f. --- main_lost.py | 22 ++-------------------- 1 file changed, 2 insertions(+), 20 deletions(-) diff --git a/main_lost.py b/main_lost.py index e89e09a..5db52cf 100755 --- a/main_lost.py +++ b/main_lost.py @@ -334,12 +334,6 @@ if __name__ == "__main__": if args.no_evaluation: continue - # Initialize variables for AP50 calculation - tp = 0 - fp = 0 - total_gt_boxes = len(gt_bbxs) - ap50 = 0 - # Compare prediction to GT boxes for pred in preds: if len(preds) == 0: @@ -351,31 +345,19 @@ if __name__ == "__main__": ious = bbox_iou(torch.from_numpy(pred), torch.from_numpy(np.asarray(gt_bbxs))) # TODO: This calculates the corloc + # we need to calculate the AP50 if torch.any(ious >= 0.50): #corloc[im_id] = 1 corloc[im_id] = 0 for i in ious: if i >= 0.50: - corloc[im_id] += 1 - - # Count true positives and false positives at IoU threshold of 0.5 - if torch.any(ious >= 0.50): - tp += 1 - else: - fp += 1 + corloc[im_id] += 1 cnt += len(gt_bbxs) if cnt % 50 == 0: pbar.set_description(f"Found {int(np.sum(corloc))}/{cnt}") - # Calculate precision and recall at IoU threshold of 0.5 - precision = tp / (tp + fp) - recall = tp / total_gt_boxes - - # Calculate AP50 as average precision at IoU threshold of 0.5 - ap50 = precision * recall - print(f"AP50: {ap50:.2f}") # Save predicted bounding boxes if args.save_predictions: -- GitLab