# Copyright 2021 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import argparse import random import pickle import torch import torch.nn as nn import numpy as np from tqdm import tqdm from PIL import Image from networks import get_model from datasets import ImageDataset, Dataset, bbox_iou from visualizations import visualize_fms, visualize_predictions, visualize_seed_expansion from object_discovery import lost, detect_box, dino_seg def voc_ap(rec, prec, use_07_metric=False): """ It's gotten from https://github.com/valeoai/LOST/blob/fcedbecb644f18358a660ce58c739cc6374feda8/tools/evaluate_unsupervised_detection_voc.py#L46 Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap if __name__ == "__main__": parser = argparse.ArgumentParser("Unsupervised object discovery with LOST.") parser.add_argument( "--arch", default="vit_small", type=str, choices=[ "vit_tiny", "vit_small", "vit_base", "resnet50", "vgg16_imagenet", "resnet50_imagenet", ], help="Model architecture.", ) parser.add_argument( "--patch_size", default=16, type=int, help="Patch resolution of the model." ) # Use a dataset parser.add_argument( "--dataset", default="VOC07", type=str, choices=[None, "VOC07", "VOC12", "COCO20k"], help="Dataset name.", ) parser.add_argument( "--set", default="train", type=str, choices=["val", "train", "trainval", "test"], help="Path of the image to load.", ) # Or use a single image parser.add_argument( "--image_path", type=str, default=None, help="If want to apply only on one image, give file path.", ) # Folder used to output visualizations and parser.add_argument( "--output_dir", type=str, default="outputs", help="Output directory to store predictions and visualizations." ) # Evaluation setup parser.add_argument("--no_hard", action="store_true", help="Only used in the case of the VOC_all setup (see the paper).") parser.add_argument("--no_evaluation", action="store_true", help="Compute the evaluation.") parser.add_argument("--save_predictions", default=True, type=bool, help="Save predicted bouding boxes.") parser.add_argument("--num_init_seeds", default=1, type=int, help="Number of initial seeds to expand from.") # Visualization parser.add_argument( "--visualize", type=str, choices=["fms", "seed_expansion", "pred", None], default=None, help="Select the different type of visualizations.", ) # For ResNet dilation parser.add_argument("--resnet_dilate", type=int, default=2, help="Dilation level of the resnet model.") # LOST parameters parser.add_argument( "--which_features", type=str, default="k", choices=["k", "q", "v"], help="Which features to use", ) parser.add_argument( "--k_patches", type=int, default=100, help="Number of patches with the lowest degree considered." ) # Use dino-seg proposed method parser.add_argument("--dinoseg", action="store_true", help="Apply DINO-seg baseline.") parser.add_argument("--dinoseg_head", type=int, default=4) args = parser.parse_args() if args.image_path is not None: args.save_predictions = False args.no_evaluation = True args.dataset = None # ------------------------------------------------------------------------------------------------------- # Dataset # If an image_path is given, apply the method only to the image if args.image_path is not None: dataset = ImageDataset(args.image_path) else: dataset = Dataset(args.dataset, args.set, args.no_hard) # ------------------------------------------------------------------------------------------------------- # Model device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print("Running on device:", device) model = get_model(args.arch, args.patch_size, args.resnet_dilate, device) # ------------------------------------------------------------------------------------------------------- # Directories if args.image_path is None: args.output_dir = os.path.join(args.output_dir, dataset.name) os.makedirs(args.output_dir, exist_ok=True) # Naming if args.dinoseg: # Experiment with the baseline DINO-seg if "vit" not in args.arch: raise ValueError("DINO-seg can only be applied to tranformer networks.") exp_name = f"{args.arch}-{args.patch_size}_dinoseg-head{args.dinoseg_head}" else: # Experiment with LOST exp_name = f"LOST-{args.arch}" if "resnet" in args.arch: exp_name += f"dilate{args.resnet_dilate}" elif "vit" in args.arch: exp_name += f"{args.patch_size}_{args.which_features}" print(f"Running LOST on the dataset {dataset.name} (exp: {exp_name})") # Visualization if args.visualize: vis_folder = f"{args.output_dir}/visualizations/{exp_name}" os.makedirs(vis_folder, exist_ok=True) # ------------------------------------------------------------------------------------------------------- # Loop over images preds_dict = {} gt_dict = {} cnt = 0 corloc = np.zeros(len(dataset.dataloader)) total_true_positives = [] total_false_positives = [] total_gt_boxes = 0 pbar = tqdm(dataset.dataloader) for im_id, inp in enumerate(pbar): torch.cuda.empty_cache() # ------------ IMAGE PROCESSING ------------------------------------------- img = inp[0] init_image_size = img.shape # Get the name of the image im_name = dataset.get_image_name(inp[1]) # Pass in case of no gt boxes in the image if im_name is None: continue # Padding the image with zeros to fit multiple of patch-size size_im = ( img.shape[0], int(np.ceil(img.shape[1] / args.patch_size) * args.patch_size), int(np.ceil(img.shape[2] / args.patch_size) * args.patch_size), ) paded = torch.zeros(size_im) paded[:, : img.shape[1], : img.shape[2]] = img img = paded # Move to gpu if device == torch.device("cuda"): img = img.cuda(non_blocking=True) # Size for transformers w_featmap = img.shape[-2] // args.patch_size h_featmap = img.shape[-1] // args.patch_size # ------------ GROUND-TRUTH ------------------------------------------- if not args.no_evaluation: gt_bbxs, gt_cls = dataset.extract_gt(inp[1], im_name) if gt_bbxs is not None: # Discard images with no gt annotations # Happens only in the case of VOC07 and VOC12 if gt_bbxs.shape[0] == 0 and args.no_hard: continue # ------------ EXTRACT FEATURES ------------------------------------------- with torch.no_grad(): # ------------ FORWARD PASS ------------------------------------------- if "vit" in args.arch: # Store the outputs of qkv layer from the last attention layer feat_out = {} def hook_fn_forward_qkv(module, input, output): feat_out["qkv"] = output model._modules["blocks"][-1]._modules["attn"]._modules["qkv"].register_forward_hook(hook_fn_forward_qkv) # Forward pass in the model attentions = model.get_last_selfattention(img[None, :, :, :]) # Scaling factor scales = [args.patch_size, args.patch_size] # Dimensions nb_im = attentions.shape[0] # Batch size nh = attentions.shape[1] # Number of heads nb_tokens = attentions.shape[2] # Number of tokens # Baseline: compute DINO segmentation technique proposed in the DINO paper # and select the biggest component if args.dinoseg: pred = dino_seg(attentions, (w_featmap, h_featmap), args.patch_size, head=args.dinoseg_head) pred = np.asarray(pred) else: # Extract the qkv features of the last attention layer qkv = ( feat_out["qkv"] .reshape(nb_im, nb_tokens, 3, nh, -1 // nh) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv[0], qkv[1], qkv[2] k = k.transpose(1, 2).reshape(nb_im, nb_tokens, -1) q = q.transpose(1, 2).reshape(nb_im, nb_tokens, -1) v = v.transpose(1, 2).reshape(nb_im, nb_tokens, -1) # Modality selection if args.which_features == "k": feats = k[:, 1:, :] elif args.which_features == "q": feats = q[:, 1:, :] elif args.which_features == "v": feats = v[:, 1:, :] elif "resnet" in args.arch: x = model.forward(img[None, :, :, :]) d, w_featmap, h_featmap = x.shape[1:] feats = x.reshape((1, d, -1)).transpose(2, 1) # Apply layernorm layernorm = nn.LayerNorm(feats.size()[1:]).to(device) feats = layernorm(feats) # Scaling factor scales = [ float(img.shape[1]) / x.shape[2], float(img.shape[2]) / x.shape[3], ] elif "vgg16" in args.arch: x = model.forward(img[None, :, :, :]) d, w_featmap, h_featmap = x.shape[1:] feats = x.reshape((1, d, -1)).transpose(2, 1) # Apply layernorm layernorm = nn.LayerNorm(feats.size()[1:]).to(device) feats = layernorm(feats) # Scaling factor scales = [ float(img.shape[1]) / x.shape[2], float(img.shape[2]) / x.shape[3], ] else: raise ValueError("Unknown model.") # ------------ Apply LOST ------------------------------------------- if not args.dinoseg: preds, A, scores, seeds = lost( feats, [w_featmap, h_featmap], scales, init_image_size, k_patches=args.k_patches, num_init_seeds=args.num_init_seeds, iou_threshold=0.1 ) # ------------ Visualizations ------------------------------------------- if args.visualize == "fms": for i, x in enumerate(zip(preds, seeds)): pred, seed = x visualize_fms(A.clone().cpu().numpy(), seed, scores, [w_featmap, h_featmap], scales, vis_folder, im_name+'_'+str(i)) elif args.visualize == "seed_expansion": for i, x in enumerate(zip(preds, seeds)): pred, seed = x image = dataset.load_image(im_name) # Before expansion pred_seed, _ = detect_box( A[seed, :], seed, [w_featmap, h_featmap], scales=scales, initial_im_size=init_image_size[1:], ) visualize_seed_expansion(image, pred, seed, pred_seed, scales, [w_featmap, h_featmap], vis_folder, im_name+'_'+str(i)) elif args.visualize == "pred": image = dataset.load_image(im_name) for i, x in enumerate(zip(preds, seeds)): pred, seed = x image_name = None if i == len(preds) -1: image_name = im_name visualize_predictions(image, pred, seed, scales, [w_featmap, h_featmap], vis_folder, image_name) # Save the prediction #preds_dict[im_name] = preds # Evaluation if args.no_evaluation: continue nd = len(gt_bbxs) total_gt_boxes += nd gt_box_mask = [0] * nd for idx, pred in enumerate(preds): ious = bbox_iou(torch.from_numpy(pred), torch.from_numpy(gt_bbxs)) for gt_idx, iou in enumerate(ious): if iou > 0.50 and gt_box_mask[gt_idx] == 0: total_true_positives.append(1) total_false_positives.append(0) gt_box_mask[gt_idx] = 1 else: total_true_positives.append(0) total_false_positives.append(1) # compute precision recall total_false_positives = np.cumsum(total_false_positives) total_true_positives = np.cumsum(total_true_positives) rec = total_true_positives / float(total_gt_boxes) # avoid divide by zero in case the first detection matches a difficult # ground truth prec = total_true_positives / np.maximum(total_true_positives + total_false_positives, np.finfo(np.float64).eps) ap = voc_ap(rec, prec, use_07_metric=False) print("\nAP50: %f" % ap) # Save predicted bounding boxes if args.save_predictions: folder = f"{args.output_dir}/{exp_name}" os.makedirs(folder, exist_ok=True) filename = os.path.join(folder, "preds.pkl") with open(filename, "wb") as f: pickle.dump(preds_dict, f) print("Predictions saved at %s" % filename) # Evaluate #if not args.no_evaluation: # print(f"corloc: {100*np.sum(corloc)/cnt:.2f} ({int(np.sum(corloc))}/{cnt})") # result_file = os.path.join(folder, 'results.txt') # with open(result_file, 'w') as f: # f.write('corloc,%.1f,,\n'%(100*np.sum(corloc)/cnt)) # print('File saved at %s'%result_file)