cma_approach_square_size.py 15.6 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1 2 3 4 5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
7
from os import makedirs
harry1080ti's avatar
harry1080ti committed
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
25
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
26 27
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
28 29 30 31 32 33 34 35 36 37 38
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
39
        self.is_hybrid = hybrid
harry1080ti's avatar
harry1080ti committed
40 41 42 43 44 45 46 47 48 49 50 51 52
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

53
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
54
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
55

harry1080ti's avatar
harry1080ti committed
56 57
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

justinborromeo's avatar
WIP  
justinborromeo committed
163 164 165
    """
    Decide partition sizes and evaluate.
    """
166
    def eva_hybrid_sq(self, layer):
justinborromeo's avatar
WIP  
justinborromeo committed
167
        # res is a list of length # of partitions.  Step size is 3
harry1080ti's avatar
harry1080ti committed
168 169
        res = [self.res_step] * self.k
        latencies = []
justinborromeo's avatar
WIP  
justinborromeo committed
170 171 172 173 174
        
        # TODO Change this to a binary search.

        # max_res_unit = 1920*9*1 from sq_approach_faster
        variable_max_res_unit = self.max_res_unit
harry1080ti's avatar
harry1080ti committed
175

justinborromeo's avatar
WIP  
justinborromeo committed
176 177
        # Generate initial solution
        while sum([r*r for r in res]) < variable_max_res_unit:
harry1080ti's avatar
harry1080ti committed
178 179
            latencies, max_idx = self.find_max_latency(layer, res)
            res[max_idx] += self.res_step
justinborromeo's avatar
WIP  
justinborromeo committed
180 181 182 183 184 185 186 187 188 189
        
        while pp.packingPenalty(res, self) != 0:
            while sum([r*r for r in res]) < variable_max_res_unit:
                latencies, max_idx = self.find_max_latency(layer, res)
                res[max_idx] += self.res_step
            variable_max_res_unit -= 100

        # TODO we want to penalize based on how much we had to decrease
        # variable_max_res_unit.
        max_res_unit_decrease = self.max_res_unit - variable_max_res_unit
190 191 192 193
        
        # If all layers couldn't be packed, packingPenalty returns 0.
        packing_penalty = pp.packingPenalty(res, self.max_pack_size)
        return latencies[max_idx] + packing_penalty, latencies, res, layer
harry1080ti's avatar
harry1080ti committed
194 195 196 197 198 199 200 201 202

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
203
            if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
204 205 206 207
                return pid, penalty
            else:
                return pid, penalty*4

justinborromeo's avatar
WIP  
justinborromeo committed
208 209
        # regroup_layers assigns layers to the partitions.  Returns a list of
        # partition lists which contain layers.
harry1080ti's avatar
harry1080ti committed
210 211
        layer = self.regroup_layers(layer)

212
        return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
234
        temp_out = []
harry1080ti's avatar
harry1080ti committed
235 236 237 238 239 240 241 242
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
243 244 245 246
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
247
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
248
            #     else:
249
            #         if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
250 251 252 253 254 255 256 257
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
258

259
            if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
280
            temp_out.append(self.report(False)[1])
harry1080ti's avatar
harry1080ti committed
281 282 283
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
284
        return temp_out
harry1080ti's avatar
harry1080ti committed
285

286
    def report(self, output_png):
harry1080ti's avatar
harry1080ti committed
287 288 289 290 291 292
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []

293
        if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
294 295 296 297
            if not self.filter_layer(self.best_layer):
                ##print("RESULT NOT VALID")
                ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print(self.penalty_layer(self.best_layer))
harry1080ti's avatar
harry1080ti committed
298 299 300 301 302
                if self.print_to_csv:
                    with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                        writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                        writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                    csvFile.close
harry1080ti's avatar
harry1080ti committed
303

harry1080ti's avatar
harry1080ti committed
304
                result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
305

harry1080ti's avatar
harry1080ti committed
306
                return False, result
harry1080ti's avatar
harry1080ti committed
307 308

            layer = self.regroup_layers(self.best_layer)
309
            max_latency, latencies, res, layers = self.eva_hybrid_sq(layer)
harry1080ti's avatar
harry1080ti committed
310 311 312 313 314 315 316 317 318 319 320 321
        else:
            if not self.filter_res(self.best_res) and not self.filter_layer(self.best_layer):
                #print("RESULT NOT VALID")
                #print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print("Res:", self.best_res, "sum: ", sum(self.best_res))
                return False

            layer = self.regroup_layers(self.best_layer)
            res = self.best_res
            latencies, max_idx = self.find_max_latency(layer, self.best_res)
            max_latency = latencies[max_idx]

harry1080ti's avatar
harry1080ti committed
322
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
323 324 325
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
326 327 328 329 330 331 332 333 334 335 336 337 338 339
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
340

harry1080ti's avatar
harry1080ti committed
341 342 343 344 345
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
            csvFile.close
harry1080ti's avatar
harry1080ti committed
346 347
        
        if self.valid_sampling_percentage > 0:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            directory_path = pc.RESULT_SCREENSHOT_PATH + \
                str(self.topology_file.replace(".csv", "")) + "/" + \
                "pack_size_" + str(self.max_pack_size) + "/" + \
                "linear_penalty_constant_" + str(pp.PENALTY_CONSTANT) + "/"
            makedirs(directory_path, exist_ok = True)
            pngFileName = "k=" + str(self.k) + "_max=" + str(self.max_res_unit) \
                + ".png"
            packing_penalty = pp.packingPenalty(res, self.max_pack_size)
            if packing_penalty == 0 and output_png:
                bin_area = self.max_pack_size ** 2
                packed_area = 0
                for rect in res:
                    square_area = rect ** 2
                    packed_area += square_area
                percentage_wasted = 100 * (bin_area - packed_area) / bin_area
                consumed_area = 0
                pp.printPNG(res, self.max_pack_size, directory_path + pngFileName)
harry1080ti's avatar
harry1080ti committed
365
        
harry1080ti's avatar
harry1080ti committed
366 367
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
368 369 370 371 372 373 374 375 376 377 378 379

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

380
    es_hybrid = cma_approach(
harry1080ti's avatar
harry1080ti committed
381 382 383 384 385 386 387 388 389 390 391
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
392
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
393
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
394 395 396
    )

    trials = 1
397 398 399
    es_hybrid.run()
    while not es_hybrid.report(True) and trials < 20:
        es_hybrid.run()
harry1080ti's avatar
harry1080ti committed
400 401
        trials += 1

harry1080ti's avatar
harry1080ti committed
402
    # k += 1
harry1080ti's avatar
harry1080ti committed
403
    #print("convergence takes", trials, "trials")