cma_approach_square_size.py 16.7 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1 2 3 4 5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
7
from os import makedirs
Justin Borromeo's avatar
Justin Borromeo committed
8
from copy import deepcopy
9
import csv 
harry1080ti's avatar
harry1080ti committed
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
27
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
28 29
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
30 31 32 33 34 35 36 37 38 39 40
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
41
        self.is_hybrid = hybrid
harry1080ti's avatar
harry1080ti committed
42 43 44 45 46 47 48 49 50 51 52 53 54
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

55
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
56
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
57

harry1080ti's avatar
harry1080ti committed
58 59
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

justinborromeo's avatar
WIP  
justinborromeo committed
165
    """
Justin Borromeo's avatar
Justin Borromeo committed
166 167
    Decide partition sizes and evaluate the soln.  Should always return a 
    packable solution.
justinborromeo's avatar
WIP  
justinborromeo committed
168
    """
169
    def eva_hybrid_sq(self, layer):
Justin Borromeo's avatar
.  
Justin Borromeo committed
170 171
        # res is a list where each element corresponds to a partition.  res_step
        # is the minimum amount by which partition edge length increases.
harry1080ti's avatar
harry1080ti committed
172 173
        res = [self.res_step] * self.k
        latencies = []
justinborromeo's avatar
WIP  
justinborromeo committed
174 175 176 177

        # max_res_unit = 1920*9*1 from sq_approach_faster
        variable_max_res_unit = self.max_res_unit
        
178 179 180
        # Do a binary search to find the largest packable variable_max_res_unit.
        search_upper_bound = self.max_res_unit
        search_lower_bound = sum([r*r for r in res])
Justin Borromeo's avatar
Justin Borromeo committed
181 182 183 184

        last_packable_res = []
        last_packable_max_res_unit = 0
        while search_upper_bound > search_lower_bound:
185 186 187 188
            variable_max_res_unit = \
                int((search_upper_bound + search_lower_bound)/2)
            limit_reached = False
            while not limit_reached:
justinborromeo's avatar
WIP  
justinborromeo committed
189 190
                latencies, max_idx = self.find_max_latency(layer, res)
                res[max_idx] += self.res_step
191 192 193 194 195 196 197
                # If this addition puts the solution over the limit, we need to
                # revert the last partition addition.  TODO write some code to
                # see if we can assign the remaining units.
                if sum([r**2 for r in res]) > variable_max_res_unit:
                    res[max_idx] -= self.res_step
                    limit_reached = True
            if pp.isPackable(res, self.max_pack_size):
Justin Borromeo's avatar
Justin Borromeo committed
198 199
                last_packable_res = deepcopy(res)
                last_packable_max_res_unit = variable_max_res_unit
200 201 202 203 204 205 206 207 208
                # The desired max_res_unit value is greater than its current
                # value.
                search_lower_bound = variable_max_res_unit
            else:
                # The desired max_res_unit value is less than its current 
                # value.
                search_upper_bound = variable_max_res_unit

        # Calculate latencies of final solution.
Justin Borromeo's avatar
Justin Borromeo committed
209
        latencies, max_idx = self.find_max_latency(layer, last_packable_res)
justinborromeo's avatar
WIP  
justinborromeo committed
210 211 212 213

        # TODO we want to penalize based on how much we had to decrease
        # variable_max_res_unit.
        max_res_unit_decrease = self.max_res_unit - variable_max_res_unit
214
        packing_penalty = pp.calculatePackingPenalty(max_res_unit_decrease)
Justin Borromeo's avatar
Justin Borromeo committed
215
        return latencies[max_idx] + packing_penalty, latencies, last_packable_res, layer
harry1080ti's avatar
harry1080ti committed
216 217 218 219 220 221 222 223 224

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
225
            if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
226 227 228 229
                return pid, penalty
            else:
                return pid, penalty*4

justinborromeo's avatar
WIP  
justinborromeo committed
230 231
        # regroup_layers assigns layers to the partitions.  Returns a list of
        # partition lists which contain layers.
harry1080ti's avatar
harry1080ti committed
232 233
        layer = self.regroup_layers(layer)

234
        return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
256
        temp_out = []
harry1080ti's avatar
harry1080ti committed
257 258 259 260 261 262 263 264
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
265 266 267 268
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
269
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
270
            #     else:
271
            #         if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
272 273 274 275 276 277 278 279
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
280

281
            if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
302
            temp_out.append(self.report(False)[1])
harry1080ti's avatar
harry1080ti committed
303 304 305
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
306
        return temp_out
harry1080ti's avatar
harry1080ti committed
307

308
    def report(self, output_png):
harry1080ti's avatar
harry1080ti committed
309 310 311 312 313
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []
Justin Borromeo's avatar
Justin Borromeo committed
314 315 316 317 318 319 320 321 322
        if not self.filter_layer(self.best_layer):
            ##print("RESULT NOT VALID")
            ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
            #print(self.penalty_layer(self.best_layer))
            if self.print_to_csv:
                with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                    writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                    writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                csvFile.close
harry1080ti's avatar
harry1080ti committed
323

Justin Borromeo's avatar
Justin Borromeo committed
324
            result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
325

Justin Borromeo's avatar
Justin Borromeo committed
326
            return False, result
harry1080ti's avatar
harry1080ti committed
327

Justin Borromeo's avatar
Justin Borromeo committed
328 329
        layer = self.regroup_layers(self.best_layer)
        max_latency, latencies, res, _ = self.eva_hybrid_sq(layer)
harry1080ti's avatar
harry1080ti committed
330

harry1080ti's avatar
harry1080ti committed
331
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
332 333 334
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
335 336 337 338 339 340 341 342 343 344 345 346 347 348
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
349

harry1080ti's avatar
harry1080ti committed
350 351 352
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
353
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1, (1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
harry1080ti's avatar
harry1080ti committed
354
            csvFile.close
harry1080ti's avatar
harry1080ti committed
355 356
        
        if self.valid_sampling_percentage > 0:
357 358 359
            directory_path = pc.RESULT_SCREENSHOT_PATH + \
                str(self.topology_file.replace(".csv", "")) + "/" + \
                "pack_size_" + str(self.max_pack_size) + "/" + \
Justin Borromeo's avatar
Justin Borromeo committed
360
                "penalty_constant_" + str(pp.PENALTY_CONSTANT) + "/"
361 362
            makedirs(directory_path, exist_ok = True)
            pngFileName = "k=" + str(self.k) + "_max=" + str(self.max_res_unit) \
Justin Borromeo's avatar
Justin Borromeo committed
363
                + "_latency=" + str(max_latency) + ".png"
Justin Borromeo's avatar
Justin Borromeo committed
364
            if pp.isPackable(res, self.max_pack_size) and output_png:
365 366 367 368 369 370 371 372
                bin_area = self.max_pack_size ** 2
                packed_area = 0
                for rect in res:
                    square_area = rect ** 2
                    packed_area += square_area
                percentage_wasted = 100 * (bin_area - packed_area) / bin_area
                consumed_area = 0
                pp.printPNG(res, self.max_pack_size, directory_path + pngFileName)
373 374 375 376 377 378 379 380 381 382 383
                

                with open(pc.RESULT_CSV_PATH+'cma_bsearch_sq.csv', 'a') as csvFile:
                    writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                    writer.writerow([self.k, # number of partitions
                                    self.topology_file, # topology
                                    1/max_latency, # throughput
                                    max_latency, # maximum latency
                                    self.max_res_unit, # number of DSP48 units
                                    pngFileName # output file
                                    ])
harry1080ti's avatar
harry1080ti committed
384
        
harry1080ti's avatar
harry1080ti committed
385 386
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
387 388 389 390 391 392 393 394 395 396 397 398

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

399
    es_hybrid = cma_approach(
harry1080ti's avatar
harry1080ti committed
400 401 402 403 404 405 406 407 408 409 410
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
411
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
412
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
413 414 415
    )

    trials = 1
416 417 418
    es_hybrid.run()
    while not es_hybrid.report(True) and trials < 20:
        es_hybrid.run()
harry1080ti's avatar
harry1080ti committed
419 420
        trials += 1

harry1080ti's avatar
harry1080ti committed
421
    # k += 1
harry1080ti's avatar
harry1080ti committed
422
    #print("convergence takes", trials, "trials")