cma_approach_square_size.py 16.7 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1
2
3
4
5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
7
from os import makedirs
Justin Borromeo's avatar
Justin Borromeo committed
8
from copy import deepcopy
9
import csv 
harry1080ti's avatar
harry1080ti committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
27
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
28
29
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
30
31
32
33
34
35
36
37
38
39
40
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
41
        self.is_hybrid = hybrid
harry1080ti's avatar
harry1080ti committed
42
43
44
45
46
47
48
49
50
51
52
53
54
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

55
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
56
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
57

harry1080ti's avatar
harry1080ti committed
58
59
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

justinborromeo's avatar
WIP    
justinborromeo committed
165
    """
Justin Borromeo's avatar
Justin Borromeo committed
166
167
    Decide partition sizes and evaluate the soln.  Should always return a 
    packable solution.
justinborromeo's avatar
WIP    
justinborromeo committed
168
    """
169
    def eva_hybrid_sq(self, layer):
Justin Borromeo's avatar
.    
Justin Borromeo committed
170
171
        # res is a list where each element corresponds to a partition.  res_step
        # is the minimum amount by which partition edge length increases.
harry1080ti's avatar
harry1080ti committed
172
173
        res = [self.res_step] * self.k
        latencies = []
justinborromeo's avatar
WIP    
justinborromeo committed
174
175
176
177

        # max_res_unit = 1920*9*1 from sq_approach_faster
        variable_max_res_unit = self.max_res_unit
        
178
179
180
        # Do a binary search to find the largest packable variable_max_res_unit.
        search_upper_bound = self.max_res_unit
        search_lower_bound = sum([r*r for r in res])
Justin Borromeo's avatar
Justin Borromeo committed
181
182
183
184

        last_packable_res = []
        last_packable_max_res_unit = 0
        while search_upper_bound > search_lower_bound:
185
186
187
188
            variable_max_res_unit = \
                int((search_upper_bound + search_lower_bound)/2)
            limit_reached = False
            while not limit_reached:
justinborromeo's avatar
WIP    
justinborromeo committed
189
190
                latencies, max_idx = self.find_max_latency(layer, res)
                res[max_idx] += self.res_step
191
192
193
194
195
196
197
                # If this addition puts the solution over the limit, we need to
                # revert the last partition addition.  TODO write some code to
                # see if we can assign the remaining units.
                if sum([r**2 for r in res]) > variable_max_res_unit:
                    res[max_idx] -= self.res_step
                    limit_reached = True
            if pp.isPackable(res, self.max_pack_size):
Justin Borromeo's avatar
Justin Borromeo committed
198
199
                last_packable_res = deepcopy(res)
                last_packable_max_res_unit = variable_max_res_unit
200
201
202
203
204
205
206
207
208
                # The desired max_res_unit value is greater than its current
                # value.
                search_lower_bound = variable_max_res_unit
            else:
                # The desired max_res_unit value is less than its current 
                # value.
                search_upper_bound = variable_max_res_unit

        # Calculate latencies of final solution.
Justin Borromeo's avatar
Justin Borromeo committed
209
        latencies, max_idx = self.find_max_latency(layer, last_packable_res)
justinborromeo's avatar
WIP    
justinborromeo committed
210
211
212
213

        # TODO we want to penalize based on how much we had to decrease
        # variable_max_res_unit.
        max_res_unit_decrease = self.max_res_unit - variable_max_res_unit
214
        packing_penalty = pp.calculatePackingPenalty(max_res_unit_decrease)
Justin Borromeo's avatar
Justin Borromeo committed
215
        return latencies[max_idx] + packing_penalty, latencies, last_packable_res, layer
harry1080ti's avatar
harry1080ti committed
216
217
218
219
220
221
222
223
224

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
225
            if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
226
227
228
229
                return pid, penalty
            else:
                return pid, penalty*4

justinborromeo's avatar
WIP    
justinborromeo committed
230
231
        # regroup_layers assigns layers to the partitions.  Returns a list of
        # partition lists which contain layers.
harry1080ti's avatar
harry1080ti committed
232
233
        layer = self.regroup_layers(layer)

234
        return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
256
        temp_out = []
harry1080ti's avatar
harry1080ti committed
257
258
259
260
261
262
263
264
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
265
266
267
268
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
269
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
270
            #     else:
271
            #         if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
272
273
274
275
276
277
278
279
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
280

281
            if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
302
            temp_out.append(self.report(False)[1])
harry1080ti's avatar
harry1080ti committed
303
304
305
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
306
        return temp_out
harry1080ti's avatar
harry1080ti committed
307

308
    def report(self, output_png):
harry1080ti's avatar
harry1080ti committed
309
310
311
312
313
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []
Justin Borromeo's avatar
Justin Borromeo committed
314
315
316
317
318
319
320
321
322
        if not self.filter_layer(self.best_layer):
            ##print("RESULT NOT VALID")
            ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
            #print(self.penalty_layer(self.best_layer))
            if self.print_to_csv:
                with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                    writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                    writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                csvFile.close
harry1080ti's avatar
harry1080ti committed
323

Justin Borromeo's avatar
Justin Borromeo committed
324
            result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
325

Justin Borromeo's avatar
Justin Borromeo committed
326
            return False, result
harry1080ti's avatar
harry1080ti committed
327

Justin Borromeo's avatar
Justin Borromeo committed
328
329
        layer = self.regroup_layers(self.best_layer)
        max_latency, latencies, res, _ = self.eva_hybrid_sq(layer)
harry1080ti's avatar
harry1080ti committed
330

harry1080ti's avatar
harry1080ti committed
331
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
332
333
334
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
349

harry1080ti's avatar
harry1080ti committed
350
351
352
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
353
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1, (1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
harry1080ti's avatar
harry1080ti committed
354
            csvFile.close
harry1080ti's avatar
harry1080ti committed
355
356
        
        if self.valid_sampling_percentage > 0:
357
358
359
            directory_path = pc.RESULT_SCREENSHOT_PATH + \
                str(self.topology_file.replace(".csv", "")) + "/" + \
                "pack_size_" + str(self.max_pack_size) + "/" + \
Justin Borromeo's avatar
Justin Borromeo committed
360
                "penalty_constant_" + str(pp.PENALTY_CONSTANT) + "/"
361
362
            makedirs(directory_path, exist_ok = True)
            pngFileName = "k=" + str(self.k) + "_max=" + str(self.max_res_unit) \
Justin Borromeo's avatar
Justin Borromeo committed
363
                + "_latency=" + str(max_latency) + ".png"
Justin Borromeo's avatar
Justin Borromeo committed
364
            if pp.isPackable(res, self.max_pack_size) and output_png:
365
366
367
368
369
370
371
372
                bin_area = self.max_pack_size ** 2
                packed_area = 0
                for rect in res:
                    square_area = rect ** 2
                    packed_area += square_area
                percentage_wasted = 100 * (bin_area - packed_area) / bin_area
                consumed_area = 0
                pp.printPNG(res, self.max_pack_size, directory_path + pngFileName)
373
374
375
376
377
378
379
380
381
382
383
                

                with open(pc.RESULT_CSV_PATH+'cma_bsearch_sq.csv', 'a') as csvFile:
                    writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                    writer.writerow([self.k, # number of partitions
                                    self.topology_file, # topology
                                    1/max_latency, # throughput
                                    max_latency, # maximum latency
                                    self.max_res_unit, # number of DSP48 units
                                    pngFileName # output file
                                    ])
harry1080ti's avatar
harry1080ti committed
384
        
harry1080ti's avatar
harry1080ti committed
385
386
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
387
388
389
390
391
392
393
394
395
396
397
398

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

399
    es_hybrid = cma_approach(
harry1080ti's avatar
harry1080ti committed
400
401
402
403
404
405
406
407
408
409
410
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
411
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
412
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
413
414
415
    )

    trials = 1
416
417
418
    es_hybrid.run()
    while not es_hybrid.report(True) and trials < 20:
        es_hybrid.run()
harry1080ti's avatar
harry1080ti committed
419
420
        trials += 1

harry1080ti's avatar
harry1080ti committed
421
    # k += 1
harry1080ti's avatar
harry1080ti committed
422
    #print("convergence takes", trials, "trials")