cma_approach_square_size.py 15.2 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1 2 3 4 5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
7
from os import makedirs
harry1080ti's avatar
harry1080ti committed
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
25
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
26 27
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
28 29 30 31 32 33 34 35 36 37 38
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
39
        self.is_hybrid = hybrid
harry1080ti's avatar
harry1080ti committed
40 41 42 43 44 45 46 47 48 49 50 51 52
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

53
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
54
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
55

harry1080ti's avatar
harry1080ti committed
56 57
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

163 164

    def eva_hybrid_sq(self, layer):
harry1080ti's avatar
harry1080ti committed
165 166 167 168 169 170 171 172 173 174
        res = [self.res_step] * self.k
        latencies = []

        while sum([r*r for r in res]) < self.max_res_unit:
            latencies, max_idx = self.find_max_latency(layer, res)
            res[max_idx] += self.res_step

        # for i in range(0, int(self.max_res_unit/self.res_step - self.k*self.res_step)):
        #     latencies, max_idx = self.find_max_latency(layer, res)
        #     res[max_idx] += self.res_step
175 176 177 178
        
        # If all layers couldn't be packed, packingPenalty returns 0.
        packing_penalty = pp.packingPenalty(res, self.max_pack_size)
        if packing_penalty == 0:
harry1080ti's avatar
harry1080ti committed
179
            return latencies[max_idx], latencies, res, layer
180
        return latencies[max_idx] + packing_penalty, latencies, res, layer
harry1080ti's avatar
harry1080ti committed
181 182 183 184 185 186 187 188 189

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
190
            if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
191 192 193 194 195
                return pid, penalty
            else:
                return pid, penalty*4

        layer = self.regroup_layers(layer)
196 197
        # if self.is_hybrid:
        #     return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
198 199 200 201
        # else:
        #     score, _, res, _ = self.evaluate_full_relaxed(layer)
        #     return pid, score, res

202
        return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
224
        temp_out = []
harry1080ti's avatar
harry1080ti committed
225 226 227 228 229 230 231 232
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
233 234 235 236
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
237
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
238
            #     else:
239
            #         if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
240 241 242 243 244 245 246 247
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
248

249
            if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
270
            temp_out.append(self.report(False)[1])
harry1080ti's avatar
harry1080ti committed
271 272 273
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
274
        return temp_out
harry1080ti's avatar
harry1080ti committed
275

276
    def report(self, output_png):
harry1080ti's avatar
harry1080ti committed
277 278 279 280 281 282
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []

283
        if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
284 285 286 287
            if not self.filter_layer(self.best_layer):
                ##print("RESULT NOT VALID")
                ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print(self.penalty_layer(self.best_layer))
harry1080ti's avatar
harry1080ti committed
288 289 290 291 292
                if self.print_to_csv:
                    with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                        writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                        writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                    csvFile.close
harry1080ti's avatar
harry1080ti committed
293

harry1080ti's avatar
harry1080ti committed
294
                result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
295

harry1080ti's avatar
harry1080ti committed
296
                return False, result
harry1080ti's avatar
harry1080ti committed
297 298

            layer = self.regroup_layers(self.best_layer)
299
            max_latency, latencies, res, layers = self.eva_hybrid_sq(layer)
harry1080ti's avatar
harry1080ti committed
300 301 302 303 304 305 306 307 308 309 310 311
        else:
            if not self.filter_res(self.best_res) and not self.filter_layer(self.best_layer):
                #print("RESULT NOT VALID")
                #print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print("Res:", self.best_res, "sum: ", sum(self.best_res))
                return False

            layer = self.regroup_layers(self.best_layer)
            res = self.best_res
            latencies, max_idx = self.find_max_latency(layer, self.best_res)
            max_latency = latencies[max_idx]

harry1080ti's avatar
harry1080ti committed
312
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
313 314 315
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
316 317 318 319 320 321 322 323 324 325 326 327 328 329
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
330

harry1080ti's avatar
harry1080ti committed
331 332 333 334 335
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
            csvFile.close
harry1080ti's avatar
harry1080ti committed
336 337
        
        if self.valid_sampling_percentage > 0:
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            directory_path = pc.RESULT_SCREENSHOT_PATH + \
                str(self.topology_file.replace(".csv", "")) + "/" + \
                "pack_size_" + str(self.max_pack_size) + "/" + \
                "linear_penalty_constant_" + str(pp.PENALTY_CONSTANT) + "/"
            makedirs(directory_path, exist_ok = True)
            pngFileName = "k=" + str(self.k) + "_max=" + str(self.max_res_unit) \
                + ".png"
            packing_penalty = pp.packingPenalty(res, self.max_pack_size)
            if packing_penalty == 0 and output_png:
                bin_area = self.max_pack_size ** 2
                packed_area = 0
                for rect in res:
                    square_area = rect ** 2
                    packed_area += square_area
                percentage_wasted = 100 * (bin_area - packed_area) / bin_area
                consumed_area = 0
                pp.printPNG(res, self.max_pack_size, directory_path + pngFileName)
harry1080ti's avatar
harry1080ti committed
355
        
harry1080ti's avatar
harry1080ti committed
356 357
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
358 359 360 361 362 363 364 365 366 367 368 369

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

370
    es_hybrid = cma_approach(
harry1080ti's avatar
harry1080ti committed
371 372 373 374 375 376 377 378 379 380 381
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
382
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
383
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
384 385 386
    )

    trials = 1
387 388 389
    es_hybrid.run()
    while not es_hybrid.report(True) and trials < 20:
        es_hybrid.run()
harry1080ti's avatar
harry1080ti committed
390 391
        trials += 1

harry1080ti's avatar
harry1080ti committed
392
    # k += 1
harry1080ti's avatar
harry1080ti committed
393
    #print("convergence takes", trials, "trials")