cma_approach_square_size.py 15 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
        hybird = True
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
        self.is_hybird = hybird
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

        self.max_res_available = 1920*9

    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    # def penalty_res(self, res):
    #     penalty_score = self.penalty_offest

    #     if sum(res) != self.max_res_unit:
    #         penalty_score += self.penalty_offest
    #     else:
    #         res = [abs(val) for val in res]

    #     for idx in range(self.k):
    #         if res[idx] <= 0:
    #             penalty_score *= 1.05

    #     percent_diff = abs(sum(res) - self.max_res_unit) / self.max_res_unit
    #     penalty_score += percent_diff * self.penalty_offest

    #     return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

    def eva_hybird_sq(self, layer):
        res = [self.res_step] * self.k
        latencies = []

        while sum([r*r for r in res]) < self.max_res_unit:
            latencies, max_idx = self.find_max_latency(layer, res)
            res[max_idx] += self.res_step

        # for i in range(0, int(self.max_res_unit/self.res_step - self.k*self.res_step)):
        #     latencies, max_idx = self.find_max_latency(layer, res)
        #     res[max_idx] += self.res_step

        return latencies[max_idx], latencies, res, layer

    # not really in used
    # def evaluate_full_relaxed(self, layer):
    #     seed = []

    #     for i in range(self.k - 1):
    #         seed.append(int(self.max_res_unit/self.k))
    #     seed.append(self.max_res_unit - sum(seed))
    #     # #print(seed)
    #     seed = [self.encode(val, self.max_res_unit) for val in seed[:-1]]

    #     es_res = cma.CMAEvolutionStrategy(seed, \
    #         self.sigma, {'popsize' : self.population_size})
    #     i = 0
    #     while not es_res.stop() and i < self.max_iter:
    #         samples = es_res.ask()
    #         scores = [0] * es_res.popsize
    #         res = [0] * es_res.popsize

    #         for idx, sample in enumerate(samples):
    #             res_assign = [self.decode(val, self.max_res_unit) for val in sample]
    #             res_assign.append(self.max_res_unit - sum(res_assign))
    #             res[idx] = res_assign

    #         for idx, r in enumerate(res):
    #             if self.filter_res(r):
    #                 latencies, max_idx = self.find_max_latency(layer, r)
    #                 scores[idx] = latencies[max_idx]
    #             else:
    #                 scores[idx] = self.penalty_res(r)

    #         # for idx in range(self.population_size):
    #         #     #print(samples[idx], scores[idx])

    #         es_res.tell(samples, scores)
    #         i += 1

    #     res = [self.decode(val, self.max_res_unit) for val in es_res.result[0]]
    #     res.append(self.max_res_unit - sum(res))

    #     if self.filter_res(r):
    #         latencies, max_idx = self.find_max_latency(layer, res)
    #     else:
    #         max_latency = self.penalty_res(r)
    #         latencies = [max_latency]*self.k
    #         max_idx = 0

    #     return latencies[max_idx], latencies, res, layer

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
            if self.is_hybird:
                return pid, penalty
            else:
                return pid, penalty*4

        layer = self.regroup_layers(layer)
        # if self.is_hybird:
        #     return pid, self.eva_hybird_sq(layer)[0]
        # else:
        #     score, _, res, _ = self.evaluate_full_relaxed(layer)
        #     return pid, score, res

        return pid, self.eva_hybird_sq(layer)[0]

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')



        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

            pool = Pool(processes = 1)#cpu_count() - 4)
            for result in pool.imap_unordered(self.evaluation_top_level, id_list):
                scores[result[0]] = result[1]
                if result[1] >= self.penalty_offest:
                    invalid_sampling += 1
                else:
                    if not self.is_hybird:
                        res_combintaions[result[0]] = result[2]
            pool.close()
            pool.join()

            if not self.is_hybird:
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
            self.report()
            self.i += 1

        self.ending_iter = self.i

    def report(self):
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []

        if self.is_hybird:
            if not self.filter_layer(self.best_layer):
                ##print("RESULT NOT VALID")
                ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print(self.penalty_layer(self.best_layer))

                with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                    writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                    writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0,0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                csvFile.close

                return False

            layer = self.regroup_layers(self.best_layer)
            max_latency, latencies, res, layers = self.eva_hybird_sq(layer)
        else:
            if not self.filter_res(self.best_res) and not self.filter_layer(self.best_layer):
                #print("RESULT NOT VALID")
                #print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print("Res:", self.best_res, "sum: ", sum(self.best_res))
                return False

            layer = self.regroup_layers(self.best_layer)
            res = self.best_res
            latencies, max_idx = self.find_max_latency(layer, self.best_res)
            max_latency = latencies[max_idx]

        # generate data for mapping the full array
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
        print("================================= RESULT =================================")
        print("Solution: (out of", self.total_valid_solution, "solutions)")
        print(layer)
        print("Res mapping:")
        print(res)
        print("Latency for each partition: ")
        print(latencies)
        print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        print("==========================================================================")
        print("Map to full array (", self.max_res_unit, ")")
        print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        print("==========================================================================")
        print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])

        with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
            writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
            writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
        csvFile.close
        return True

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

    es_hybird = cma_approach(
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
        hybird = True
    )

    trials = 1
    #print("======== HYBRID ======== ( k:", k, "trials:", trials, ")")
    es_hybird.run()
    while not es_hybird.report() and trials < 20:
        #print("======== HYBRID ======== ( k:", k, "trials:", trials, ")")
        es_hybird.run()
        trials += 1

    k += 1
    #print("convergence takes", trials, "trials")