cma_approach_square_size.py 16.4 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1
2
3
4
5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
7
from os import makedirs
harry1080ti's avatar
harry1080ti committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
25
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
26
27
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
28
29
30
31
32
33
34
35
36
37
38
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
39
        self.is_hybrid = hybrid
harry1080ti's avatar
harry1080ti committed
40
41
42
43
44
45
46
47
48
49
50
51
52
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

53
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
54
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
55

harry1080ti's avatar
harry1080ti committed
56
57
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

justinborromeo's avatar
WIP    
justinborromeo committed
163
164
165
    """
    Decide partition sizes and evaluate.
    """
166
    def eva_hybrid_sq(self, layer):
167
168
        # res is a list corresponding to each partition.  res_step is the
        # minimum amount by which partition size increases.
harry1080ti's avatar
harry1080ti committed
169
170
        res = [self.res_step] * self.k
        latencies = []
justinborromeo's avatar
WIP    
justinborromeo committed
171
172
173
174

        # max_res_unit = 1920*9*1 from sq_approach_faster
        variable_max_res_unit = self.max_res_unit
        
175
176
177
178
179
180
181
182
        # Do a binary search to find the largest packable variable_max_res_unit.
        search_upper_bound = self.max_res_unit
        search_lower_bound = sum([r*r for r in res])
        while not search_upper_bound >= search_lower_bound:
            variable_max_res_unit = \
                int((search_upper_bound + search_lower_bound)/2)
            limit_reached = False
            while not limit_reached:
justinborromeo's avatar
WIP    
justinborromeo committed
183
184
                latencies, max_idx = self.find_max_latency(layer, res)
                res[max_idx] += self.res_step
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                # If this addition puts the solution over the limit, we need to
                # revert the last partition addition.  TODO write some code to
                # see if we can assign the remaining units.
                if sum([r**2 for r in res]) > variable_max_res_unit:
                    res[max_idx] -= self.res_step
                    limit_reached = True
            if pp.isPackable(res, self.max_pack_size):
                # The desired max_res_unit value is greater than its current
                # value.
                search_lower_bound = variable_max_res_unit
            else:
                # The desired max_res_unit value is less than its current 
                # value.
                search_upper_bound = variable_max_res_unit

        # Calculate latencies of final solution.
        latencies, max_idx = self.find_max_latency(layer, res)
justinborromeo's avatar
WIP    
justinborromeo committed
202
203
204
205

        # TODO we want to penalize based on how much we had to decrease
        # variable_max_res_unit.
        max_res_unit_decrease = self.max_res_unit - variable_max_res_unit
206
207
        packing_penalty = pp.calculatePackingPenalty(max_res_unit_decrease)

208
        return latencies[max_idx] + packing_penalty, latencies, res, layer
harry1080ti's avatar
harry1080ti committed
209
210
211
212
213
214
215
216
217

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
218
            if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
219
220
221
222
                return pid, penalty
            else:
                return pid, penalty*4

justinborromeo's avatar
WIP    
justinborromeo committed
223
224
        # regroup_layers assigns layers to the partitions.  Returns a list of
        # partition lists which contain layers.
harry1080ti's avatar
harry1080ti committed
225
226
        layer = self.regroup_layers(layer)

227
        return pid, self.eva_hybrid_sq(layer)[0]
harry1080ti's avatar
harry1080ti committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
249
        temp_out = []
harry1080ti's avatar
harry1080ti committed
250
251
252
253
254
255
256
257
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
258
259
260
261
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
262
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
263
            #     else:
264
            #         if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
265
266
267
268
269
270
271
272
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
273

274
            if not self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
295
            temp_out.append(self.report(False)[1])
harry1080ti's avatar
harry1080ti committed
296
297
298
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
299
        return temp_out
harry1080ti's avatar
harry1080ti committed
300

301
    def report(self, output_png):
harry1080ti's avatar
harry1080ti committed
302
303
304
305
306
307
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []

308
        if self.is_hybrid:
harry1080ti's avatar
harry1080ti committed
309
310
311
312
            if not self.filter_layer(self.best_layer):
                ##print("RESULT NOT VALID")
                ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print(self.penalty_layer(self.best_layer))
harry1080ti's avatar
harry1080ti committed
313
314
315
316
317
                if self.print_to_csv:
                    with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                        writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                        writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                    csvFile.close
harry1080ti's avatar
harry1080ti committed
318

harry1080ti's avatar
harry1080ti committed
319
                result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
320

harry1080ti's avatar
harry1080ti committed
321
                return False, result
harry1080ti's avatar
harry1080ti committed
322
323

            layer = self.regroup_layers(self.best_layer)
324
            max_latency, latencies, res, _ = self.eva_hybrid_sq(layer)
harry1080ti's avatar
harry1080ti committed
325
326
327
328
329
330
331
332
333
334
335
336
        else:
            if not self.filter_res(self.best_res) and not self.filter_layer(self.best_layer):
                #print("RESULT NOT VALID")
                #print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print("Res:", self.best_res, "sum: ", sum(self.best_res))
                return False

            layer = self.regroup_layers(self.best_layer)
            res = self.best_res
            latencies, max_idx = self.find_max_latency(layer, self.best_res)
            max_latency = latencies[max_idx]

harry1080ti's avatar
harry1080ti committed
337
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
338
339
340
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
355

harry1080ti's avatar
harry1080ti committed
356
357
358
359
360
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
            csvFile.close
harry1080ti's avatar
harry1080ti committed
361
362
        
        if self.valid_sampling_percentage > 0:
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            directory_path = pc.RESULT_SCREENSHOT_PATH + \
                str(self.topology_file.replace(".csv", "")) + "/" + \
                "pack_size_" + str(self.max_pack_size) + "/" + \
                "linear_penalty_constant_" + str(pp.PENALTY_CONSTANT) + "/"
            makedirs(directory_path, exist_ok = True)
            pngFileName = "k=" + str(self.k) + "_max=" + str(self.max_res_unit) \
                + ".png"
            packing_penalty = pp.packingPenalty(res, self.max_pack_size)
            if packing_penalty == 0 and output_png:
                bin_area = self.max_pack_size ** 2
                packed_area = 0
                for rect in res:
                    square_area = rect ** 2
                    packed_area += square_area
                percentage_wasted = 100 * (bin_area - packed_area) / bin_area
                consumed_area = 0
                pp.printPNG(res, self.max_pack_size, directory_path + pngFileName)
harry1080ti's avatar
harry1080ti committed
380
        
harry1080ti's avatar
harry1080ti committed
381
382
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
383
384
385
386
387
388
389
390
391
392
393
394

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

395
    es_hybrid = cma_approach(
harry1080ti's avatar
harry1080ti committed
396
397
398
399
400
401
402
403
404
405
406
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
407
        hybrid = True,
harry1080ti's avatar
harry1080ti committed
408
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
409
410
411
    )

    trials = 1
412
413
414
    es_hybrid.run()
    while not es_hybrid.report(True) and trials < 20:
        es_hybrid.run()
harry1080ti's avatar
harry1080ti committed
415
416
        trials += 1

harry1080ti's avatar
harry1080ti committed
417
    # k += 1
harry1080ti's avatar
harry1080ti committed
418
    #print("convergence takes", trials, "trials")