cma_approach_square_size.py 14.3 KB
Newer Older
harry1080ti's avatar
harry1080ti committed
1 2 3 4 5
import cma
from multiprocessing import Pool
from os import cpu_count
import time
import path_constant as pc
harry1080ti's avatar
harry1080ti committed
6
import packing_penalty as pp
harry1080ti's avatar
harry1080ti committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

class cma_approach(object):
    def __init__(self,
        # data path
        path_to_datasrc = "alexnet_data.csv",
        path_to_topology = "alexnet.csv",
        target_col = "Cycles",

        # problem definition
        number_of_partition = 4, max_iteration = 100,
        sigma = 0.5, population_size = 10,

        # constraint
        max_res_unit = 960, initial_res = 0,
        res_step = 1,
        penalty_offest = 10000000000,
        seeding_type="optimised",
harry1080ti's avatar
harry1080ti committed
24
        hybird = True,
harry1080ti's avatar
harry1080ti committed
25 26
        print_to_csv = True,
        max_pack_size = 129
harry1080ti's avatar
harry1080ti committed
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        ):
        self.target_col = target_col
        self.start = time.time()
        self.k = number_of_partition
        self.max_iter = max_iteration
        self.sigma = sigma
        self.max_res_unit = max_res_unit
        self.res_step = res_step
        self.population_size = population_size
        self.penalty_offest = penalty_offest
        self.ending_iter = 0
        self.is_hybird = hybird
        self.data_src = {}

        self.topology_file = path_to_topology
        self.layers = self.parse_topology_file()
        self.parse_data_set_file(path_to_datasrc)

        self.best_layer = number_of_partition * [0]
        self.best_res = number_of_partition * [0]

        self.total_valid_solution = 0
        self.trial = 1
        self.seeding_type = seeding_type

52
        self.max_res_available = max_res_unit
harry1080ti's avatar
harry1080ti committed
53
        self.print_to_csv = print_to_csv
harry1080ti's avatar
harry1080ti committed
54

harry1080ti's avatar
harry1080ti committed
55 56
        self.max_pack_size = max_pack_size

harry1080ti's avatar
harry1080ti committed
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def parse_topology_file(self):
        layers = []
        with open(pc.TOPOLOGIES_PATH+self.topology_file, 'r') as f:
            next(f)
            for line in f:
                elems = line.strip().split(',')
                layers.append(elems[0])

        for layer in layers:
            self.data_src[layer] = {}
        return layers

    def parse_data_set_file(self, path_to_data_csv):
        first = True
        target_idx = 2
        with open(pc.DATA_SOURCE_PATH+path_to_data_csv, 'r') as f:
            for line in f:
                elems = line.strip().split(',')
                # print(elems)
                if first:
                    for idx, col in enumerate(elems):
                        if self.target_col in col:
                            target_idx = idx
                            break
                    first = False
                else:
                    self.data_src[elems[1]][int(elems[0])] = int(float(elems[target_idx]))

    def regroup_layers(self, sample):
        # #print("DEBUG", sample)
        detail_sample = []
        idx = 0
        for size in sample:
            part = []

            if size == 1:
                part.append(self.layers[idx])
                idx += 1
            else:
                for i in range(0, size):
                    part.append(self.layers[i + idx])
                idx += size

            detail_sample.append(part)

        return detail_sample

    def decode(self, val, max_val):
        return int(val * max_val)

    def encode(self, val, max_val):
        return float(val / max_val)

    def filter_layer(self, layer):
        for idx in range(self.k):
            if layer[idx] <= 0:
                return False

        if sum(layer) != len(self.layers):
            return False

        return True

    def filter_res(self, res):
        # #print(layer, res)
        for idx in range(self.k):
            if res[idx] <= 0:
                return False

        if sum(res) != self.max_res_unit:
            return False

        return True

    def penalty_layer(self, layer):
        penalty_score = self.penalty_offest

        if sum(layer) != len(self.layers):
            penalty_score += self.penalty_offest
        else:
            layer = [abs(val) for val in layer]

        for idx in range(self.k):
            if layer[idx] <= 0:
                penalty_score *= 1.05

        percent_diff = (abs(sum(layer) - len(self.layers)) / len(self.layers))
        penalty_score += percent_diff * self.penalty_offest

        return penalty_score

    def find_max_latency(self, layer_partition, res_partitions):
        latencies = [0] * len(layer_partition)
        max_latency_idx = 0
        # print(layer_partition)
        # print(res_partitions)
        for idx, part in enumerate(layer_partition):
            res = res_partitions[idx]
            for layer in part:
                latencies[idx] += self.data_src[layer][res]
            if latencies[idx] > latencies[max_latency_idx]:
                max_latency_idx = idx

        return latencies, max_latency_idx

    def eva_hybird_sq(self, layer):
        res = [self.res_step] * self.k
        latencies = []

        while sum([r*r for r in res]) < self.max_res_unit:
            latencies, max_idx = self.find_max_latency(layer, res)
            res[max_idx] += self.res_step

        # for i in range(0, int(self.max_res_unit/self.res_step - self.k*self.res_step)):
        #     latencies, max_idx = self.find_max_latency(layer, res)
        #     res[max_idx] += self.res_step

harry1080ti's avatar
harry1080ti committed
174 175 176 177
        if pp.packingPenalty(res, self.max_pack_size):
            return latencies[max_idx], latencies, res, layer

        return self.penalty_offest, latencies, res, layer
harry1080ti's avatar
harry1080ti committed
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    def evaluation_top_level(self, in_val):
        pid, sampling = in_val
        layer = [self.decode(val, len(self.layers)) for val in sampling]
        layer.append(len(self.layers) - sum(layer))
        penalty = 0

        if not self.filter_layer(layer):
            penalty = self.penalty_layer(layer)
            if self.is_hybird:
                return pid, penalty
            else:
                return pid, penalty*4

        layer = self.regroup_layers(layer)
        # if self.is_hybird:
        #     return pid, self.eva_hybird_sq(layer)[0]
        # else:
        #     score, _, res, _ = self.evaluate_full_relaxed(layer)
        #     return pid, score, res

        return pid, self.eva_hybird_sq(layer)[0]

    def run(self):
        self.trial += self.trial
        if (self.seeding_type=="allzeros"):
            self.seed = [0]*(self.k-1)
            self.seed_od = self.seed
        elif (self.seeding_type=="optimised"):
            self.seed = []
            for i in range(self.k - 1):
                self.seed.append(int(len(self.layers)/self.k))
            self.seed.append(len(self.layers) - sum(self.seed))
            self.seed_od = self.seed
            self.seed = [self.encode(val, len(self.layers)) for val in self.seed[:-1]]
        else:
            raise ValueError('Invalid Seeding Strategy')

        self.es = cma.CMAEvolutionStrategy(self.seed, self.sigma, \
            {'popsize' : self.population_size})

        best_overall = self.penalty_offest
        self.i = 0
harry1080ti's avatar
harry1080ti committed
221
        temp_out = []
harry1080ti's avatar
harry1080ti committed
222 223 224 225 226 227 228 229
        while not self.es.stop() and self.i < self.max_iter:
            samples = self.es.ask()
            id_list = [(idx, sample) for idx, sample in enumerate(samples)]
            scores = [0] * self.es.popsize
            invalid_sampling = 0

            res_combintaions = [0] * self.es.popsize

harry1080ti's avatar
harry1080ti committed
230 231 232 233
            # pool = Pool(processes = cpu_count() - 4)
            # for result in pool.imap_unordered(self.evaluation_top_level, id_list):
            #     scores[result[0]] = result[1]
            #     if result[1] >= self.penalty_offest:
harry1080ti's avatar
harry1080ti committed
234
            #         invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
235 236 237 238 239 240 241 242 243 244
            #     else:
            #         if not self.is_hybird:
            #             res_combintaions[result[0]] = result[2]
            # pool.close()
            # pool.join()

            for tup in id_list:
                _, scores[tup[0]] = self.evaluation_top_level(tup)
                if scores[tup[0]] >= self.penalty_offest:
                    invalid_sampling += 1
harry1080ti's avatar
harry1080ti committed
245

harry1080ti's avatar
harry1080ti committed
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            if not self.is_hybird:
                best_in_iteration = min(scores)

                if best_in_iteration < best_overall and best_in_iteration < self.penalty_offest:
                    best_overall = best_in_iteration
                    self.best_res = res_combintaions[scores.index(min(scores))]

            ##print(str(self.i) + ":", \
            #    "Sigma:",round(self.es.sigma, 4), \
            #    "|| Valid sampling percentage:", \
            #        (self.population_size - invalid_sampling) /self.population_size *100)
            ##print("invalid sampling", invalid_sampling)
            self.valid_sampling_percentage = (self.population_size - invalid_sampling) /self.population_size *100
            self.total_valid_solution += self.population_size - invalid_sampling
            self.samples = samples
            self.scores = scores
            self.es.tell(samples, scores)

            self.end = time.time()
            self.best_layer = [self.decode(val, len(self.layers)) for val in self.es.result[0]]
            self.best_layer.append(len(self.layers) - sum(self.best_layer))
harry1080ti's avatar
harry1080ti committed
267
            temp_out.append(self.report()[1])
harry1080ti's avatar
harry1080ti committed
268 269 270
            self.i += 1

        self.ending_iter = self.i
LongChan's avatar
LongChan committed
271
        return temp_out
harry1080ti's avatar
harry1080ti committed
272 273 274 275 276 277 278 279 280 281 282 283 284

    def report(self):
        ##print(self.i, self.es.sigma)
        max_latency = 0
        layer = []
        res = []
        latencies = []

        if self.is_hybird:
            if not self.filter_layer(self.best_layer):
                ##print("RESULT NOT VALID")
                ##print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print(self.penalty_layer(self.best_layer))
harry1080ti's avatar
harry1080ti committed
285 286 287 288 289
                if self.print_to_csv:
                    with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                        writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                        writer.writerow([self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
                    csvFile.close
harry1080ti's avatar
harry1080ti committed
290

harry1080ti's avatar
harry1080ti committed
291
                result = [self.target_col,self.i,self.k, self.topology_file, 0, 0, 0, 0, 0, 0, 0, layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
harry1080ti's avatar
harry1080ti committed
292

harry1080ti's avatar
harry1080ti committed
293
                return False, result
harry1080ti's avatar
harry1080ti committed
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

            layer = self.regroup_layers(self.best_layer)
            max_latency, latencies, res, layers = self.eva_hybird_sq(layer)
        else:
            if not self.filter_res(self.best_res) and not self.filter_layer(self.best_layer):
                #print("RESULT NOT VALID")
                #print("Layer:", self.best_layer, "sum: ", sum(self.best_layer))
                #print("Res:", self.best_res, "sum: ", sum(self.best_res))
                return False

            layer = self.regroup_layers(self.best_layer)
            res = self.best_res
            latencies, max_idx = self.find_max_latency(layer, self.best_res)
            max_latency = latencies[max_idx]

harry1080ti's avatar
harry1080ti committed
309
        # generate data for mapping the full array (129 * 129)
harry1080ti's avatar
harry1080ti committed
310 311 312
        full_latency, full_max_idx = self.find_max_latency([self.layers], [129]*len(self.layers))

        # PLEASE UNCOMMENT OUT THIS PART IF YOU NOT USING THE BASH SCRIPT WE HAVE PROVIDED 
harry1080ti's avatar
harry1080ti committed
313 314 315 316 317 318 319 320 321 322 323 324 325 326
        # print("================================= RESULT =================================")
        # print("Solution: (out of", self.total_valid_solution, "solutions)")
        # print(layer)
        # print("Res mapping:")
        # print(res)
        # print("Latency for each partition: ")
        # print(latencies)
        # print("Final Latency:", max_latency*self.k, "|| Throught put:", 1/max_latency)
        # print("==========================================================================")
        # print("Map to full array (", self.max_res_unit, ")")
        # print("Final Latency:", full_latency[full_max_idx], "|| Throught put:", 1/full_latency[full_max_idx])
        # print("==========================================================================")
        # print("Throughtput Ratio:", (1/max_latency)/(1/full_latency[full_max_idx]))
        # print("Latency increase:", (max_latency*self.k)/full_latency[full_max_idx])
harry1080ti's avatar
harry1080ti committed
327

harry1080ti's avatar
harry1080ti committed
328 329 330 331 332
        if self.print_to_csv:
            with open(pc.RESULT_CSV_PATH+'cma_logmore_sq.csv', 'a') as csvFile:
                writer = csv.writer(csvFile, delimiter=',', lineterminator="\n")
                writer.writerow([self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type])
            csvFile.close
harry1080ti's avatar
harry1080ti committed
333 334 335 336 337
        
        if self.valid_sampling_percentage > 0:
            pngFileName = str(self.topology_file.replace(".csv", "")) + "_k=" + str(self.k) + "_max=" + str(self.max_res_unit) + "_packSize=" + str(self.max_pack_size) + ".png"
            pp.printPNG(res, self.max_pack_size, pngFileName)
        
harry1080ti's avatar
harry1080ti committed
338 339
        result = [self.target_col,self.i,self.k, self.topology_file, 1,(1/max_latency), max_latency*self.k, 1/full_latency[full_max_idx], full_latency[full_max_idx], (1/max_latency)/(1/full_latency[full_max_idx]), (max_latency*self.k)/full_latency[full_max_idx], layer, res, self.end-self.start, self.es.sigma, self.seed_od,self.valid_sampling_percentage, self.trial, self.population_size, self.max_res_unit, self.seeding_type]
        return True, result
harry1080ti's avatar
harry1080ti committed
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

if __name__ == "__main__":
    import csv
    import sys

    topology = sys.argv[1]
    k = int(sys.argv[2])
    population_size = int(sys.argv[3])
    max_res_unit = int(sys.argv[4])
    seeding_type = sys.argv[5]
    target_col = sys.argv[6]

    es_hybird = cma_approach(
        path_to_datasrc = str(topology)+"_square_mem_bound.csv",
        path_to_topology = str(topology)+".csv",
        target_col = str(target_col),

        number_of_partition = k, max_iteration = 10000,
        sigma = 0.5, population_size = population_size,

        max_res_unit = max_res_unit, initial_res = 0,
        res_step = 3,
        penalty_offest = 100000000000,
        seeding_type = seeding_type,
harry1080ti's avatar
harry1080ti committed
364 365
        hybird = True,
        print_to_csv = True
harry1080ti's avatar
harry1080ti committed
366 367 368 369 370 371 372 373
    )

    trials = 1
    es_hybird.run()
    while not es_hybird.report() and trials < 20:
        es_hybird.run()
        trials += 1

harry1080ti's avatar
harry1080ti committed
374
    # k += 1
harry1080ti's avatar
harry1080ti committed
375
    #print("convergence takes", trials, "trials")