baselines_learner.py 4.17 KB
Newer Older
Aravind Bk's avatar
Aravind Bk committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
from .learner_base import LearnerBase

# TODO: make sure that the package for PPO2 is installed.
from stable_baselines import PPO2
from stable_baselines.common.vec_env import DummyVecEnv
from stable_baselines.common.policies import MlpPolicy

import numpy as np


class PPO2Agent(LearnerBase):
    def __init__(self,
                 input_shape,
                 nb_actions,
                 env,
                 policy=None,
                 tensorboard=False,
                 log_path="./logs",
                 **kwargs):
        """The constructor which sets the properties of the class.

        Args:
            input_shape: Shape of observation space, e.g (10,);
            nb_actions: number of values in action space;
            env: env on which the agent learns
            policy: stable_baselines Policy object. default is MlpPolicy
            tensorboard: whether to integrate tensorboard or not
            log_path="./logs",
            **kwargs: other optional key-value arguments with defaults defined in property_defaults
        """
        super(PPO2Agent, self).__init__(input_shape, nb_actions, **kwargs)

        if policy is None:
            policy = self.get_default_policy()

        self.log_path = log_path

        self.env = DummyVecEnv([lambda: env]) #PPO2 requried a vectorized environment for parallel training
        self.agent_model = self.create_agent(policy, tensorboard)

    def get_default_policy(self):
        """Creates the default policy.

        Returns:     stable_baselines Policy object. default is MlpPolicy
        """
        return MlpPolicy

    def create_agent(self, policy, tensorboard):
        """Creates a PPO agent

        Returns:
            stable_baselines PPO2 object
        """
        if tensorboard:
            return PPO2(policy, self.env, verbose=1, tensorboard_log=self.log_path)
        else:
            return PPO2(policy, self.env, verbose=1)

    def fit(self,
            env=None,
            nb_steps=1000000,
            visualize=False,
            nb_max_episode_steps=200):

        # PPO2 callback is only called each episode (not step) so cannot render whole episode
        # To render each step, add self.env.render() in at Runner class method run() in stable_baselines ppo2.py
        callback = self.__render_env_while_learning if visualize else None
        self.agent_model.learn(total_timesteps=nb_steps, callback=callback)

    @staticmethod
    def __render_env_while_learning(_locals, _globals):
        _locals['self'].env.render()

    def save_weights(self, file_name="test_weights.h5f", overwrite=True):
        self.agent_model.save(file_name)

    def test_model(self,
                   env=None,
                   nb_episodes=50,
                   visualize=True,
                   nb_max_episode_steps=200):

        episode_rewards = [0.0]
        obs = self.env.reset()
        current_episode = 1
        current_step = 0
        while current_episode <= nb_episodes:
            # _states are only useful when using LSTM policies
            action, _states = self.agent_model.predict(obs)

            # here, action, rewards  and dones are arrays
            # because we are using vectorized env
            obs, rewards, dones, info = self.env.step(action)
            current_step += 1

            if visualize:
                self.env.render()

            # Stats
            episode_rewards[-1] += rewards[0]
            if dones[0] or current_step > nb_max_episode_steps:
                obs = self.env.reset()
                print ("Episode ", current_episode, "reward: ", episode_rewards[-1])
                episode_rewards.append(0.0)
                current_episode += 1
                current_step = 0

        # Compute mean reward for the last 100 episodes
        mean_100ep_reward = round(np.mean(episode_rewards[-100:]), 1)
        print("Mean reward over last 100 episodes:", mean_100ep_reward)

    def load_weights(self, file_name="test_weights.h5f"):
        self.agent_model = PPO2.load(file_name)

    def forward(self, observation):
        return self.agent_model.predict(observation)

    def set_environment(self, env):
        self.env = DummyVecEnv([lambda: env])
        self.agent_model.set_env(self.env)