From f428cd41e145558caad124da3d9023e8d3982d55 Mon Sep 17 00:00:00 2001
From: Ashish Gaurav <agaurav77@yahoo.com>
Date: Mon, 19 Nov 2018 18:18:47 -0500
Subject: [PATCH] run docformatter

---
 backends/baselines_learner.py                 |  5 +-
 backends/controller_base.py                   | 11 ++--
 backends/kerasrl_learner.py                   |  4 +-
 backends/manual_policy.py                     |  4 +-
 backends/mcts_learner.py                      | 53 +++++++++----------
 backends/online_mcts_controller.py            |  2 +-
 backends/policy_base.py                       |  4 +-
 env/env_base.py                               | 31 +++++------
 env/road_env.py                               |  6 +--
 env/simple_intersection/features.py           |  4 +-
 env/simple_intersection/shapes.py             |  2 +-
 .../simple_intersection_env.py                | 39 +++++++-------
 env/simple_intersection/utilities.py          |  7 +--
 high_level_policy_main.py                     |  4 +-
 low_level_policy_main.py                      |  4 +-
 mcts.py                                       | 16 +++---
 model_checker/LTL_property_base.py            | 22 ++++----
 model_checker/atomic_propositions_base.py     | 11 ++--
 model_checker/parser.py                       | 32 ++++++-----
 model_checker/simple_intersection/classes.py  | 12 ++---
 options/options_loader.py                     | 28 +++++-----
 options/simple_intersection/maneuver_base.py  | 40 ++++++++------
 ppo2_training.py                              |  3 +-
 23 files changed, 175 insertions(+), 169 deletions(-)

diff --git a/backends/baselines_learner.py b/backends/baselines_learner.py
index 8a62830..ab4e4da 100644
--- a/backends/baselines_learner.py
+++ b/backends/baselines_learner.py
@@ -48,10 +48,9 @@ class PPO2Agent(LearnerBase):
         return MlpPolicy
 
     def create_agent(self, policy, tensorboard):
-        """Creates a PPO agent
+        """Creates a PPO agent.
 
-        Returns:
-            stable_baselines PPO2 object
+        Returns:     stable_baselines PPO2 object
         """
         if tensorboard:
             return PPO2(
diff --git a/backends/controller_base.py b/backends/controller_base.py
index b9bbc35..885f941 100644
--- a/backends/controller_base.py
+++ b/backends/controller_base.py
@@ -18,16 +18,17 @@ class ControllerBase(PolicyBase):
             setattr(self, prop, kwargs.get(prop, default))
 
     def can_transition(self):
-        """Returns boolean signifying whether we can transition. To be
-        implemented in subclass.
+        """Returns boolean signifying whether we can transition.
+
+        To be implemented in subclass.
         """
 
         raise NotImplemented(self.__class__.__name__ + \
             "can_transition is not implemented.")
 
     def do_transition(self, observation):
-        """Do a transition, assuming we can transition. To be
-        implemented in subclass.
+        """Do a transition, assuming we can transition. To be implemented in
+        subclass.
 
         Args:
             observation: final observation from episodic step
@@ -37,7 +38,7 @@ class ControllerBase(PolicyBase):
             "do_transition is not implemented.")
 
     def set_current_node(self, node_alias):
-        """Sets the current node which is being executed
+        """Sets the current node which is being executed.
 
         Args:
             node: node alias of the node to be set
diff --git a/backends/kerasrl_learner.py b/backends/kerasrl_learner.py
index d8138bb..a98dc92 100644
--- a/backends/kerasrl_learner.py
+++ b/backends/kerasrl_learner.py
@@ -431,8 +431,8 @@ class DQNAgentOverOptions(DQNAgent):
                 self.low_level_policies.keys())
 
     def __get_invalid_node_indices(self):
-        """Returns a list of option indices that are invalid according to initiation conditions.
-        """
+        """Returns a list of option indices that are invalid according to
+        initiation conditions."""
         invalid_node_indices = list()
         for index, option_alias in enumerate(self.low_level_policy_aliases):
             self.low_level_policies[option_alias].reset_maneuver()
diff --git a/backends/manual_policy.py b/backends/manual_policy.py
index 4b891e7..6e59db1 100644
--- a/backends/manual_policy.py
+++ b/backends/manual_policy.py
@@ -20,8 +20,8 @@ class ManualPolicy(ControllerBase):
         self.adj = transition_adj
 
     def _transition(self):
-        """Check if the current node's termination condition is met and if
-        it is possible to transition to another node, i.e. its initiation
+        """Check if the current node's termination condition is met and if it
+        is possible to transition to another node, i.e. its initiation
         condition is met. This is an internal function.
 
         Returns the new node if a transition can happen, None otherwise
diff --git a/backends/mcts_learner.py b/backends/mcts_learner.py
index 3743dba..f9bd759 100644
--- a/backends/mcts_learner.py
+++ b/backends/mcts_learner.py
@@ -4,9 +4,8 @@ import pickle
 
 
 class MCTSLearner(ControllerBase):
-    """Monte Carlo Tree Search implementation using the UCB1 and
-    progressive widening approach as explained in Paxton et al (2017).
-    """
+    """Monte Carlo Tree Search implementation using the UCB1 and progressive
+    widening approach as explained in Paxton et al (2017)."""
 
     _ucb_vals = set()
 
@@ -76,8 +75,8 @@ class MCTSLearner(ControllerBase):
         self.new_node_num = to_restore['new_node_num']
 
     def _create_node(self, low_level_policy):
-        """Create the node associated with curr_node_num, using the
-        given low level policy.
+        """Create the node associated with curr_node_num, using the given low
+        level policy.
 
         Args:
             low_level_policy: the option's alias
@@ -92,11 +91,10 @@ class MCTSLearner(ControllerBase):
         return created_node_num, {"policy": low_level_policy}
 
     def _to_discrete(self, observation):
-        """Converts observation to a discrete observation tuple. Also
-        append (a) whether we are following a vehicle, and (b) whether
-        there is a vehicle in the opposite lane in the approximately
-        the same x position. These values will be useful for Follow
-        and ChangeLane maneuvers.
+        """Converts observation to a discrete observation tuple. Also append
+        (a) whether we are following a vehicle, and (b) whether there is a
+        vehicle in the opposite lane in the approximately the same x position.
+        These values will be useful for Follow and ChangeLane maneuvers.
 
         Args:
             observation: observation tuple from the environment
@@ -137,9 +135,9 @@ class MCTSLearner(ControllerBase):
 
     def _get_visitation_count(self, observation, option=None):
         """Finds the visitation count of the discrete form of the observation.
-        If discrete observation not found, then inserted into self.N with
-        value 0. Auto converts the observation into discrete form. If option
-        is not None, then this uses self.M instead of self.N
+        If discrete observation not found, then inserted into self.N with value
+        0. Auto converts the observation into discrete form. If option is not
+        None, then this uses self.M instead of self.N.
 
         Args:
             observation: observation tuple from the environment
@@ -177,8 +175,9 @@ class MCTSLearner(ControllerBase):
 
     def _get_possible_options(self):
         """Returns a set of options that can be taken from the current node.
-        Goes through adjacency set of current node and finds which next nodes'
-        initiation condition is met.
+
+        Goes through adjacency set of current node and finds which next
+        nodes' initiation condition is met.
         """
 
         all_options = set(self.low_level_policies.keys())
@@ -211,9 +210,9 @@ class MCTSLearner(ControllerBase):
         return visited_aliases
 
     def _ucb_adjusted_q(self, observation, C=1):
-        """Computes Q_star(observation, option_i) plus the UCB term, which
-        is C*[predictor(observation, option_i)]/[1+N(observation, option_i)],
-        for all option_i in the adjacency set of the current node.
+        """Computes Q_star(observation, option_i) plus the UCB term, which is
+        C*[predictor(observation, option_i)]/[1+N(observation, option_i)], for
+        all option_i in the adjacency set of the current node.
 
         Args:
             observation: observation tuple from the environment
@@ -257,14 +256,14 @@ class MCTSLearner(ControllerBase):
         return sum_rewards / (1 + self._get_visitation_count(observation))
 
     def _select(self, observation, depth=0, visualize=False):
-        """MCTS selection function. For representation, we only use
-        the discrete part of the observation.
+        """MCTS selection function. For representation, we only use the
+        discrete part of the observation.
 
         Args:
             observation: observation tuple from the environment
             depth: current depth, starts from root node, hence 0 by default
             visualize: whether or not to visualize low level steps
-        
+
         Returns the sum of values from the given observation.
         """
 
@@ -316,8 +315,8 @@ class MCTSLearner(ControllerBase):
         return self._value(observation), all_ep_R + episode_R
 
     def traverse(self, observation, visualize=False):
-        """Do a complete traversal from root to leaf. Assumes the
-        environment is reset and we are at the root node.
+        """Do a complete traversal from root to leaf. Assumes the environment
+        is reset and we are at the root node.
 
         Args:
             observation: observation from the environment
@@ -329,13 +328,13 @@ class MCTSLearner(ControllerBase):
         return self._select(observation, visualize=visualize)
 
     def do_transition(self, observation, visualize=False):
-        """Do a transition using UCB metric, with the latest observation
-        from the episodic step.
+        """Do a transition using UCB metric, with the latest observation from
+        the episodic step.
 
         Args:
             observation: final observation from episodic step
-            visualize: whether or not to visualize low level steps            
-        
+            visualize: whether or not to visualize low level steps
+
         Returns o_star using UCB metric
         """
 
diff --git a/backends/online_mcts_controller.py b/backends/online_mcts_controller.py
index 64343d8..a53d83b 100644
--- a/backends/online_mcts_controller.py
+++ b/backends/online_mcts_controller.py
@@ -5,7 +5,7 @@ import numpy as np
 
 
 class OnlineMCTSController(ControllerBase):
-    """Online MCTS"""
+    """Online MCTS."""
 
     def __init__(self, env, low_level_policies, start_node_alias):
         """Constructor for manual policy execution.
diff --git a/backends/policy_base.py b/backends/policy_base.py
index ad1d3df..25bb5c3 100644
--- a/backends/policy_base.py
+++ b/backends/policy_base.py
@@ -1,3 +1,3 @@
 class PolicyBase:
-    """Abstract policy base from which every policy backend is defined
-	and inherited."""
+    """Abstract policy base from which every policy backend is defined and
+    inherited."""
diff --git a/env/env_base.py b/env/env_base.py
index a68c066..4a8b9a5 100644
--- a/env/env_base.py
+++ b/env/env_base.py
@@ -3,23 +3,20 @@ from model_checker import Parser
 
 class GymCompliantEnvBase:
     def step(self, action):
-        """ Gym compliant step function which
-            will be implemented in the subclass.
-        """
+        """Gym compliant step function which will be implemented in the
+        subclass."""
         raise NotImplemented(self.__class__.__name__ +
                              "step is not implemented.")
 
     def reset(self):
-        """ Gym compliant reset function which
-            will be implemented in the subclass.
-        """
+        """Gym compliant reset function which will be implemented in the
+        subclass."""
         raise NotImplemented(self.__class__.__name__ +
                              "reset is not implemented.")
 
     def render(self):
-        """ Gym compliant step function which
-            will be implemented in the subclass.
-        """
+        """Gym compliant step function which will be implemented in the
+        subclass."""
         raise NotImplemented(self.__class__.__name__ +
                              "render is not implemented.")
 
@@ -49,7 +46,8 @@ class EpisodicEnvBase(GymCompliantEnvBase):
 
     def _init_LTL_preconditions(self):
         """Initialize the LTL preconditions (self._LTL_preconditions)..
-            in the subclass.
+
+        in the subclass.
         """
         return
 
@@ -72,9 +70,8 @@ class EpisodicEnvBase(GymCompliantEnvBase):
         self._r_terminal = None
 
     def _terminal_reward_superposition(self, r_obs):
-        """Calculate the next value when observing "obs," from the prior
-           using min, max, or summation depending on the superposition_type.
-        """
+        """Calculate the next value when observing "obs," from the prior using
+        min, max, or summation depending on the superposition_type."""
 
         if r_obs is None:
             return
@@ -133,7 +130,8 @@ class EpisodicEnvBase(GymCompliantEnvBase):
         return violate, info
 
     def current_model_checking_result(self):
-        """Returns whether or not any of the conditions is currently violated."""
+        """Returns whether or not any of the conditions is currently
+        violated."""
 
         for LTL_precondition in self._LTL_preconditions:
             if LTL_precondition.result == Parser.FALSE:
@@ -155,9 +153,8 @@ class EpisodicEnvBase(GymCompliantEnvBase):
 
     @property
     def termination_condition(self):
-        """In the subclass, specify the condition for termination of the episode
-           (or the maneuver).
-        """
+        """In the subclass, specify the condition for termination of the
+        episode (or the maneuver)."""
         if self._terminate_in_goal and self.goal_achieved:
             return True
 
diff --git a/env/road_env.py b/env/road_env.py
index 3a189ed..9743b58 100644
--- a/env/road_env.py
+++ b/env/road_env.py
@@ -1,6 +1,6 @@
 class RoadEnv:
-    """The generic road env
+    """The generic road env.
 
-        TODO: Implement this generic road env for plugging-in other road envs.
-        TODO: roadEnv also having a step() function can cause a problem.
+    TODO: Implement this generic road env for plugging-in other road envs.
+    TODO: roadEnv also having a step() function can cause a problem.
     """
\ No newline at end of file
diff --git a/env/simple_intersection/features.py b/env/simple_intersection/features.py
index 9973cf6..2b70e51 100644
--- a/env/simple_intersection/features.py
+++ b/env/simple_intersection/features.py
@@ -165,9 +165,7 @@ class Features(object):
             return self.other_vehs[index]
 
     def get_features_tuple(self):
-        """
-        continuous + discrete features
-        """
+        """continuous + discrete features."""
         feature = self.con_ego + self.dis_ego
 
         for other_veh in self.other_vehs:
diff --git a/env/simple_intersection/shapes.py b/env/simple_intersection/shapes.py
index 62f1566..d814290 100644
--- a/env/simple_intersection/shapes.py
+++ b/env/simple_intersection/shapes.py
@@ -14,7 +14,7 @@ class Rectangle(Shape):
     """Rectangle using OpenGL."""
 
     def __init__(self, xmin, xmax, ymin, ymax, color=(0, 0, 0, 255)):
-        """ Constructor for Rectangle.
+        """Constructor for Rectangle.
 
         The rectangle has the four points (xmin, ymin), (xmin, ymax),
         (xmax, ymax), (xmax, ymin).
diff --git a/env/simple_intersection/simple_intersection_env.py b/env/simple_intersection/simple_intersection_env.py
index f37867f..1d61b91 100644
--- a/env/simple_intersection/simple_intersection_env.py
+++ b/env/simple_intersection/simple_intersection_env.py
@@ -150,7 +150,7 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
         return self.vehs[EGO_INDEX]
 
     def generate_scenario(self, **kwargs):
-        """Randomly generate a road scenario with
+        """Randomly generate a road scenario with.
 
             "the N-number of vehicles + an ego vehicle"
 
@@ -609,9 +609,9 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
 
     @staticmethod
     def __regulate_veh_speed(veh, dist, v_max_multiplier):
-        """This private method set and regulate the speed of the
-        vehicle in a way that it never requires to travel the given
-        distance for complete stop.
+        """This private method set and regulate the speed of the vehicle in a
+        way that it never requires to travel the given distance for complete
+        stop.
 
         Args:
             veh: the vehicle reference.
@@ -920,9 +920,7 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
             self.ego.theta) > self.max_ego_theta
 
     def _check_collisions(self):
-        """returns True when collision happens, False if not.
-
-        """
+        """returns True when collision happens, False if not."""
         self.__ego_collision_happened = self.check_ego_collision() or \
                                         self.is_ego_off_road()
         self.__others_collision_happened = self.check_other_veh_collisions()
@@ -1004,8 +1002,8 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
         return True if (h_offroad and v_offroad) else False
 
     def cost(self, u):
-        """Calculate the driving cost of the ego, i.e.,
-            the negative reward for the ego-driving.
+        """Calculate the driving cost of the ego, i.e., the negative reward for
+        the ego-driving.
 
         Args:
             u: the low-level input (a, dot_psi) to the ego vehicle.
@@ -1045,8 +1043,9 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
 
     #TODO: Move this to utilities
     def normalize_tuple(self, vec, scale_factor=10):
-        """Normalizes each element in a tuple according to ranges defined in self.cost_normalization_ranges.
-        Normalizes between 0 and 1. And the scales by scale_factor
+        """Normalizes each element in a tuple according to ranges defined in
+        self.cost_normalization_ranges. Normalizes between 0 and 1. And the
+        scales by scale_factor.
 
         Args:
             vec: The tuple to be normalized
@@ -1070,8 +1069,7 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
         return tuple(normalized_vec)
 
     def get_features_tuple(self):
-        """
-        Get/calculate the features wrt. the current state variables
+        """Get/calculate the features wrt. the current state variables.
 
         Returns features tuple
         """
@@ -1173,11 +1171,12 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
 
     @property
     def goal_achieved(self):
-        """
-        A property from the base class which is True if the goal
-        of the road scenario is achieved, otherwise False. This property is
-        used in both step of EpisodicEnvBase and the implementation of
-        the high-level reinforcement learning and execution.
+        """A property from the base class which is True if the goal of the road
+        scenario is achieved, otherwise False.
+
+        This property is used in both step of EpisodicEnvBase and the
+        implementation of the high-level reinforcement learning and
+        execution.
         """
 
         return (self.ego.x >= rd.hlanes.end_pos) and \
@@ -1220,9 +1219,7 @@ class SimpleIntersectionEnv(RoadEnv, EpisodicEnvBase):
             label.draw()
 
     def render(self):
-        """
-        Gym compliant render function.
-        """
+        """Gym compliant render function."""
 
         if self.window is None:
             self.window = config_Pyglet(pyglet, NUM_HPIXELS, NUM_VPIXELS)
diff --git a/env/simple_intersection/utilities.py b/env/simple_intersection/utilities.py
index cffc663..9081f92 100644
--- a/env/simple_intersection/utilities.py
+++ b/env/simple_intersection/utilities.py
@@ -247,7 +247,8 @@ def draw_all_shapes(shapes):
 
 
 def calculate_v_max(dist):
-    """Calculate the maximum velocity you can reach at the given position ahead.
+    """Calculate the maximum velocity you can reach at the given position
+    ahead.
 
     Args:
         dist: the distance you travel from the current position.
@@ -259,8 +260,8 @@ def calculate_v_max(dist):
 
 
 def calculate_s(v):
-    """Calculate the distance traveling when the vehicle is maximally
-        de-accelerating for a complete stop.
+    """Calculate the distance traveling when the vehicle is maximally de-
+    accelerating for a complete stop.
 
     Args:
         v: the current speed of the vehicle.
diff --git a/high_level_policy_main.py b/high_level_policy_main.py
index 6554c55..3c5a0f3 100644
--- a/high_level_policy_main.py
+++ b/high_level_policy_main.py
@@ -16,8 +16,8 @@ def high_level_policy_training(nb_steps=25000,
                                visualize=False,
                                tensorboard=False,
                                save_path="highlevel_weights.h5f"):
-    """
-    Do RL of the high-level policy and test it.
+    """Do RL of the high-level policy and test it.
+
     Args:
      nb_steps: the number of steps to perform RL
      load_weights: True if the pre-learned NN weights are loaded (for initializations of NNs)
diff --git a/low_level_policy_main.py b/low_level_policy_main.py
index 209f645..c6dd335 100644
--- a/low_level_policy_main.py
+++ b/low_level_policy_main.py
@@ -16,8 +16,8 @@ def low_level_policy_training(maneuver,
                               visualize=False,
                               nb_episodes_for_test=10,
                               tensorboard=False):
-    """
-    Do RL of the low-level policy of the given maneuver and test it.
+    """Do RL of the low-level policy of the given maneuver and test it.
+
     Args:
      maneuver: the name of the maneuver defined in config.json (e.g., 'default').
      nb_steps: the number of steps to perform RL.
diff --git a/mcts.py b/mcts.py
index 7c4fa22..e68356b 100644
--- a/mcts.py
+++ b/mcts.py
@@ -34,8 +34,8 @@ def mcts_training(nb_traversals,
                   visualize=False,
                   load_saved=False,
                   save_file="mcts.pickle"):
-    """
-    Do RL of the low-level policy of the given maneuver and test it.
+    """Do RL of the low-level policy of the given maneuver and test it.
+
     Args:
      nb_traversals: number of MCTS traversals
      save_every: save at every these many traversals
@@ -91,8 +91,8 @@ def mcts_evaluation(nb_traversals,
                     visualize=False,
                     save_file="mcts.pickle",
                     pretrained=False):
-    """
-    Do RL of the low-level policy of the given maneuver and test it.
+    """Do RL of the low-level policy of the given maneuver and test it.
+
     Args:
      nb_traversals: number of MCTS traversals
      save_every: save at every these many traversals
@@ -170,8 +170,8 @@ def online_mcts(nb_episodes=10):
                 first_time = False
             else:
                 print('Stepping through ...')
-                features, R, terminal, info = options.controller.step_current_node(
-                    visualize_low_level_steps=True)
+                features, R, terminal, info = options.controller.\
+                    step_current_node(visualize_low_level_steps=True)
                 episode_reward += R
                 print('Intermediate Reward: %f (ego x = %f)' %
                       (R, options.env.vehs[0].x))
@@ -224,8 +224,8 @@ def evaluate_online_mcts(nb_episodes=20, nb_trials=5):
                     first_time = False
                 else:
                     print('Stepping through ...')
-                    features, R, terminal, info = options.controller.step_current_node(
-                        visualize_low_level_steps=True)
+                    features, R, terminal, info = options.controller.\
+                        step_current_node(visualize_low_level_steps=True)
                     episode_reward += R
                     print('Intermediate Reward: %f (ego x = %f)' %
                           (R, options.env.vehs[0].x))
diff --git a/model_checker/LTL_property_base.py b/model_checker/LTL_property_base.py
index 304a306..4d5a9d8 100644
--- a/model_checker/LTL_property_base.py
+++ b/model_checker/LTL_property_base.py
@@ -5,17 +5,17 @@ from model_checker.parser import Parser, Errors
 class LTLPropertyBase(object):
     """This is a base class that contains information of an LTL property.
 
-    It encapsulates the model-checking part (see check / check_incremental),
-    and contains additional information. The subclass needs to describe
-    specific APdict to be used.
+    It encapsulates the model-checking part (see check /
+    check_incremental), and contains additional information. The
+    subclass needs to describe specific APdict to be used.
     """
 
     #: The atomic propositions dict you must set in the subclass.
     APdict = None
 
     def __init__(self, LTL_str, penalty, enabled=True):
-        """Constructor for LTLPropertyBase.
-           Assumes property does not change, but property may be applied to multiple traces.
+        """Constructor for LTLPropertyBase. Assumes property does not change,
+        but property may be applied to multiple traces.
 
         Args:
             LTL_str: the human readable string representation of the LTL property
@@ -42,8 +42,10 @@ class LTLPropertyBase(object):
         self.result = Parser.UNDECIDED
 
     def reset_property(self):
-        """Resets existing property so that it can be applied to a new sequence of states.
-           Assumes init_property or check were previously called.
+        """Resets existing property so that it can be applied to a new sequence
+        of states.
+
+        Assumes init_property or check were previously called.
         """
         self.parser.ResetProperty()
         self.result = Parser.UNDECIDED
@@ -64,11 +66,11 @@ class LTLPropertyBase(object):
 
     def check_incremental(self, state):
         """Checks an initialised property w.r.t. the next state in a trace.
-           Assumes init_property or check were previously called.
-        
+        Assumes init_property or check were previously called.
+
         Args:
             state: next state (an integer)
-            
+
         Returns:
             incremental result, in {TRUE, FALSE, UNDECIDED}
         """
diff --git a/model_checker/atomic_propositions_base.py b/model_checker/atomic_propositions_base.py
index 7e50d70..4012cdf 100644
--- a/model_checker/atomic_propositions_base.py
+++ b/model_checker/atomic_propositions_base.py
@@ -2,9 +2,9 @@ class Bits(object):
     """A bit-control class that allows us bit-wise manipulation as shown in the
     example::
 
-        bits = Bits()
-        bits[0] = False
-        bits[2] = bits[0]
+    bits = Bits()
+    bits[0] = False
+    bits[2] = bits[0]
     """
 
     def __init__(self, value=0):
@@ -35,8 +35,9 @@ class Bits(object):
 
 class AtomicPropositionsBase(Bits):
     """An AP-control base class for AP-wise manipulation.
-       the dictionary APdict and its length APdict_len has
-       to be given in the subclass
+
+    the dictionary APdict and its length APdict_len has to be given in
+    the subclass
     """
 
     APdict = None
diff --git a/model_checker/parser.py b/model_checker/parser.py
index 8a415fe..8a6dc99 100644
--- a/model_checker/parser.py
+++ b/model_checker/parser.py
@@ -191,9 +191,11 @@ class Parser(object):
     TRUE = 2
 
     def Check_old(self, propscanner, trace):
-        """Deprecated method to check an entire trace with a new property Scanner.
-         Includes SetProperty, which includes ResetProperty. 
-      """
+        """Deprecated method to check an entire trace with a new property
+        Scanner.
+
+        Includes SetProperty, which includes ResetProperty.
+        """
         self.SetProperty(propscanner)
         for state in trace:
             result = self.CheckIncremental(state)
@@ -201,9 +203,11 @@ class Parser(object):
         return result
 
     def Check(self, trace):
-        """Checks an entire trace w.r.t. an existing property Scanner.
-         Includes ResetProperty, but not SetProperty.
-      """
+        """Checks an entire trace w.r.t.
+
+        an existing property Scanner. Includes ResetProperty, but not
+        SetProperty.
+        """
         self.ResetProperty()
         for state in trace:
             result = self.CheckIncremental(state)
@@ -211,23 +215,23 @@ class Parser(object):
         return result
 
     def SetProperty(self, propscanner):
-        """Sets the property Scanner that tokenizes the property.
-      """
+        """Sets the property Scanner that tokenizes the property."""
         self.scanner = propscanner
         self.ResetProperty()
 
     def ResetProperty(self):
-        """Re-iniitializes an existing property Scanner.
-      """
+        """Re-iniitializes an existing property Scanner."""
         self.step = 0
         self.maxfactor = -1
         self.start = self.scanner.t = self.scanner.tokens
 
     def CheckIncremental(self, state):
-        """Checks a new state w.r.t. an existing property Scanner.
-	      Constructs a trace from new states using a new or previous trace list.
-	      If a previous trace list is used, states after index self.step are not valid.
-      """
+        """Checks a new state w.r.t.
+
+        an existing property Scanner. Constructs a trace from new states
+        using a new or previous trace list. If a previous trace list is
+        used, states after index self.step are not valid.
+        """
         if len(self.trace) <= self.step:
             self.trace.append(state)
         else:
diff --git a/model_checker/simple_intersection/classes.py b/model_checker/simple_intersection/classes.py
index 471d7da..4a88c83 100644
--- a/model_checker/simple_intersection/classes.py
+++ b/model_checker/simple_intersection/classes.py
@@ -4,8 +4,7 @@ from .AP_dict import AP_dict_simple_intersection
 
 # TODO: classes.py is not a good name. Spliti the two classes into separate files and rename them.
 class AtomicPropositions(AtomicPropositionsBase):
-    """ An AP-control class for AP-wise manipulation as shown in the
-        example:
+    """An AP-control class for AP-wise manipulation as shown in the example:
 
         APs = AtomicPropositions()
         APs[0] = False              # this is same as
@@ -15,16 +14,15 @@ class AtomicPropositions(AtomicPropositionsBase):
     Requires:
         Index in [...] is an integer should be in the range
         {0,1,2, ..., AP_dict_len}.
-
     """
     APdict = AP_dict_simple_intersection
 
 
 class LTLProperty(LTLPropertyBase):
-    """ is a class that contains information of an LTL property in
-        simple_intersection road scenario.
+    """is a class that contains information of an LTL property in
+    simple_intersection road scenario.
 
-        It encapsulates the model-checking part and contains additional
-        information.
+    It encapsulates the model-checking part and contains additional
+    information.
     """
     APdict = AP_dict_simple_intersection
diff --git a/options/options_loader.py b/options/options_loader.py
index 0befa6b..f58554f 100644
--- a/options/options_loader.py
+++ b/options/options_loader.py
@@ -5,8 +5,7 @@ from backends import RLController, DDPGLearner, MCTSLearner, OnlineMCTSControlle
 
 
 class OptionsGraph:
-    """
-    Represent the options graph as a graph like structure. The configuration
+    """Represent the options graph as a graph like structure. The configuration
     is specified in a json file and consists of the following specific values:
 
     * nodes: dictionary of policy node aliases -> maneuver classes
@@ -18,8 +17,7 @@ class OptionsGraph:
     visualize_low_level_steps = False
 
     def __init__(self, json_path, env_class, *env_args, **env_kwargs):
-        """
-        Constructor for the options graph.
+        """Constructor for the options graph.
 
         Args:
             json_path: path to the json file which stores the configuration
@@ -78,9 +76,9 @@ class OptionsGraph:
                                  "Controller to be used not specified")
 
     def step(self, option):
-        """Complete an episode using specified option. This assumes that
-        the manager's env is at a place where the option's initiation
-        condition is met.
+        """Complete an episode using specified option. This assumes that the
+        manager's env is at a place where the option's initiation condition is
+        met.
 
         Args:
             option: index of high level option to be executed
@@ -111,8 +109,9 @@ class OptionsGraph:
         return self.env.reset()
 
     def set_controller_policy(self, policy):
-        """Sets the trained controller policy as a function which takes in feature vector and returns
-        an option index(int). By default, trained_policy is None
+        """Sets the trained controller policy as a function which takes in
+        feature vector and returns an option index(int). By default,
+        trained_policy is None.
 
         Args:
             policy: a function which takes in feature vector and returns an option index(int)
@@ -120,7 +119,7 @@ class OptionsGraph:
         self.controller.set_trained_policy(policy)
 
     def set_controller_args(self, **kwargs):
-        """Sets custom arguments depending on the chosen controller
+        """Sets custom arguments depending on the chosen controller.
 
         Args:
             **kwargs: dictionary of args and values
@@ -128,9 +127,11 @@ class OptionsGraph:
         self.controller.set_controller_args(**kwargs)
 
     def execute_controller_policy(self):
-        """Performs low level steps and transitions to other nodes using controller transition policy.
+        """Performs low level steps and transitions to other nodes using
+        controller transition policy.
 
-        Returns state after one step, step reward, episode_termination_flag, info
+        Returns state after one step, step reward,
+        episode_termination_flag, info
         """
         if self.controller.can_transition():
             self.controller.do_transition()
@@ -138,7 +139,8 @@ class OptionsGraph:
         return self.controller.low_level_step_current_node()
 
     def set_current_node(self, node_alias):
-        """Sets the current node for controller. Used for training/testing a particular node
+        """Sets the current node for controller. Used for training/testing a
+        particular node.
 
         Args:
             node_alias: alias of the node as per config file
diff --git a/options/simple_intersection/maneuver_base.py b/options/simple_intersection/maneuver_base.py
index 46de914..78f7a63 100644
--- a/options/simple_intersection/maneuver_base.py
+++ b/options/simple_intersection/maneuver_base.py
@@ -172,8 +172,9 @@ class ManeuverBase(EpisodicEnvBase):
         return self._features_dim_reduction(features), reward, terminal, info
 
     def get_reduced_feature_length(self):
-        """
-        get the length of the feature tuple after applying _features_dim_reduction.
+        """get the length of the feature tuple after applying
+        _features_dim_reduction.
+
         :return:
         """
         return len(self.get_reduced_features_tuple())
@@ -235,8 +236,10 @@ class ManeuverBase(EpisodicEnvBase):
         self.env.render()  # Do nothing but calling self.env.render()
 
     def set_low_level_trained_policy(self, trained_policy):
-        """Sets the trained policy as a function which takes in feature vector and returns
-        an action (a, dot_psi). By default, trained_policy is None
+        """Sets the trained policy as a function which takes in feature vector
+        and returns an action (a, dot_psi).
+
+        By default, trained_policy is None
         """
         self.trained_policy = trained_policy
 
@@ -254,8 +257,7 @@ class ManeuverBase(EpisodicEnvBase):
 
     @staticmethod
     def _features_dim_reduction(features_tuple):
-        """
-        Reduce the dimension of the features in step and reset.
+        """Reduce the dimension of the features in step and reset.
 
         Param: features_tuple: a tuple obtained by e.g., self.env.get_features_tuple()
         Return: the reduced features tuple (by default, it returns features_tuple itself.
@@ -264,9 +266,11 @@ class ManeuverBase(EpisodicEnvBase):
 
     # TODO: Determine whether this method depends on the external features_tuple or for simplicity, define and use a features_tuple within the class.
     def low_level_policy(self, reduced_features_tuple):
-        """the low level policy as a map from a feature vector to an action
-        (a, dot_psi). By default, it'll call low_level_manual_policy below
-        if it's implemented in the subclass.
+        """the low level policy as a map from a feature vector to an action (a,
+        dot_psi).
+
+        By default, it'll call low_level_manual_policy below if it's
+        implemented in the subclass.
         """
         if self.trained_policy is None:
             return self._low_level_manual_policy()
@@ -274,9 +278,12 @@ class ManeuverBase(EpisodicEnvBase):
             return self.trained_policy(reduced_features_tuple)
 
     def _low_level_manual_policy(self):
-        """the manually-defined low level policy as a map from a feature vector to an action
-        (a, dot_psi). _low_level_policy will call this manual policy unless modified in the subclass.
-        Implement this in the subclass whenever necessary.
+        """the manually-defined low level policy as a map from a feature vector
+        to an action (a, dot_psi).
+
+        _low_level_policy will call this manual policy unless modified
+        in the subclass. Implement this in the subclass whenever
+        necessary.
         """
         raise NotImplemented(self.__class__.__name__ +
                              "._low_Level_manual_policy is not implemented.")
@@ -295,9 +302,9 @@ class ManeuverBase(EpisodicEnvBase):
                           enable_LTL_preconditions=True,
                           timeout=np.infty,
                           **kwargs):
-        """generates the scenario for low-level policy learning and validation. This method
-           will be used in generate_learning_scenario and generate_validation_scenario in
-           the subclasses.
+        """generates the scenario for low-level policy learning and validation.
+        This method will be used in generate_learning_scenario and
+        generate_validation_scenario in the subclasses.
 
         Param:
             enable_LTL_preconditions: whether to enable LTL preconditions in the maneuver or not
@@ -356,7 +363,6 @@ class ManeuverBase(EpisodicEnvBase):
         return  # do nothing unless specified in the subclass
 
     def _update_param(self):
-        """Update the parameters in the gym-compliant 'step' method above
-        """
+        """Update the parameters in the gym-compliant 'step' method above."""
 
         return  # do nothing unless specified in the subclass
diff --git a/ppo2_training.py b/ppo2_training.py
index 5c5609c..269b7fd 100644
--- a/ppo2_training.py
+++ b/ppo2_training.py
@@ -29,7 +29,8 @@ if __name__ == "__main__":
         "right_weights.h5f"
     )  # Save the NN weights for reloading them in the future.
 
-    # Uncomment this after training to use trained model. Comment this to use manually defined policy
+    # Uncomment this after training to use trained model.
+    # Comment this to use manually defined policy
     #agent.load_weights("right_weights.h5f")
 
     print("Testing model...")
-- 
GitLab