Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SPINS_main
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Donovan Allum
SPINS_main
Commits
1425e905
Commit
1425e905
authored
3 years ago
by
Nico Castro-Folker
Browse files
Options
Downloads
Patches
Plain Diff
Added function to compute lambda_2
parent
ae2e1992
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/Science/compute_lambda2.cpp
+161
-0
161 additions, 0 deletions
src/Science/compute_lambda2.cpp
with
161 additions
and
0 deletions
src/Science/compute_lambda2.cpp
0 → 100644
+
161
−
0
View file @
1425e905
#include
"../Science.hpp"
#include
<blitz/array.h>
#include
<string>
#include
<math.h>
using
namespace
Transformer
;
using
namespace
blitz
;
// Calculates the second largest eigenvalue of S^2+Omega^2
// S and Omega are the symmetric and antisymmetric components of u_i,j, respectively
// Note: S^2+Omega^2 = 0.5*(u_{i,k}u_{k,j}+u_{k,i}u_{j,k})
// This is used to find coherent structures correlated with eddies in turbulent flow
void
compute_lambda2
(
TArrayn
::
DTArray
&
lambda2
,
TArrayn
::
DTArray
&
u
,
TArrayn
::
DTArray
&
v
,
TArrayn
::
DTArray
&
w
,
TArrayn
::
DTArray
&
temp1
,
TArrayn
::
DTArray
&
temp2
,
TArrayn
::
Grad
*
gradient_op
,
const
string
*
grid_type
,
TArrayn
::
DTArray
&
A11
,
TArrayn
::
DTArray
&
A12
,
TArrayn
::
DTArray
&
A13
,
TArrayn
::
DTArray
&
A22
,
TArrayn
::
DTArray
&
A23
,
TArrayn
::
DTArray
&
A33
)
{
// Set-up
S_EXP
expan
[
3
];
assert
(
gradient_op
);
TArrayn
::
DTArray
*
A_ref
;
//This will hold references to the components
TArrayn
::
DTArray
*
vel_mm
;
//This will hold the velocities
TArrayn
::
DTArray
*
vel_nn
;
//This will hold the velocities
std
::
string
vel_labs
[
3
]
=
{
"u"
,
"v"
,
"w"
};
int
ctr
=
0
;
// Construct S^2+Omega^2
for
(
int
mm
=
0
;
mm
<
3
;
mm
++
){
for
(
int
nn
=
mm
;
nn
<
3
;
nn
++
){
// Choose which component will be constructed
if
(
ctr
==
0
){
A_ref
=
&
A11
;}
else
if
(
ctr
==
1
){
A_ref
=
&
A12
;}
else
if
(
ctr
==
2
){
A_ref
=
&
A13
;}
else
if
(
ctr
==
3
){
A_ref
=
&
A22
;}
else
if
(
ctr
==
4
){
A_ref
=
&
A23
;}
else
if
(
ctr
==
5
){
A_ref
=
&
A33
;}
// A switch for the velocities
// Useful for computing the u_{i,k}u_{j,k} terms
if
(
mm
==
0
){
vel_mm
=
&
u
;}
else
if
(
mm
==
1
){
vel_mm
=
&
v
;}
else
if
(
mm
==
2
){
vel_mm
=
&
w
;}
if
(
nn
==
0
){
vel_nn
=
&
u
;}
else
if
(
nn
==
1
){
vel_nn
=
&
v
;}
else
if
(
nn
==
2
){
vel_nn
=
&
w
;}
// u_{i,k}u_{k,j}
// Get u_{i,x}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
mm
]);
gradient_op
->
setup_array
(
vel_mm
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dx
(
&
temp1
,
false
);
// Get u_{x,j}
find_expansion
(
grid_type
,
expan
,
"u"
);
gradient_op
->
setup_array
(
&
u
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
nn
==
0
)
{
gradient_op
->
get_dx
(
&
temp2
,
false
);
}
else
if
(
nn
==
1
)
{
gradient_op
->
get_dy
(
&
temp2
,
false
);
}
else
if
(
nn
==
2
)
{
gradient_op
->
get_dz
(
&
temp2
,
false
);
}
*
A_ref
=
temp1
*
temp2
;
// Get u_{i,y}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
mm
]);
gradient_op
->
setup_array
(
vel_mm
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dy
(
&
temp1
,
false
);
// Get u_{y,j}
find_expansion
(
grid_type
,
expan
,
"v"
);
gradient_op
->
setup_array
(
&
v
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
nn
==
0
)
{
gradient_op
->
get_dx
(
&
temp2
,
false
);
}
else
if
(
nn
==
1
)
{
gradient_op
->
get_dy
(
&
temp2
,
false
);
}
else
if
(
nn
==
2
)
{
gradient_op
->
get_dz
(
&
temp2
,
false
);
}
*
A_ref
=
temp1
*
temp2
;
// Get u_{i,z}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
mm
]);
gradient_op
->
setup_array
(
vel_mm
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dz
(
&
temp1
,
false
);
// Get u_{z,j}
find_expansion
(
grid_type
,
expan
,
"w"
);
gradient_op
->
setup_array
(
&
w
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
nn
==
0
)
{
gradient_op
->
get_dx
(
&
temp2
,
false
);
}
else
if
(
nn
==
1
)
{
gradient_op
->
get_dy
(
&
temp2
,
false
);
}
else
if
(
nn
==
2
)
{
gradient_op
->
get_dz
(
&
temp2
,
false
);
}
*
A_ref
=
temp1
*
temp2
;
// u_{k,i}u_{j,k}
// Get u_{x,i}
find_expansion
(
grid_type
,
expan
,
"u"
);
gradient_op
->
setup_array
(
&
u
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
mm
==
0
)
{
gradient_op
->
get_dx
(
&
temp1
,
false
);
}
else
if
(
mm
==
1
)
{
gradient_op
->
get_dy
(
&
temp1
,
false
);
}
else
if
(
mm
==
2
)
{
gradient_op
->
get_dz
(
&
temp1
,
false
);
}
// Get u_{j,x}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
nn
]);
gradient_op
->
setup_array
(
vel_nn
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dx
(
&
temp2
,
false
);
*
A_ref
=
temp1
*
temp2
;
// Get u_{y,i}
find_expansion
(
grid_type
,
expan
,
"v"
);
gradient_op
->
setup_array
(
&
v
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
mm
==
0
)
{
gradient_op
->
get_dx
(
&
temp1
,
false
);
}
else
if
(
mm
==
1
)
{
gradient_op
->
get_dy
(
&
temp1
,
false
);
}
else
if
(
mm
==
2
)
{
gradient_op
->
get_dz
(
&
temp1
,
false
);
}
// Get u_{j,y}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
nn
]);
gradient_op
->
setup_array
(
vel_nn
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dy
(
&
temp2
,
false
);
*
A_ref
=
temp1
*
temp2
;
// Get u_{z,i}
find_expansion
(
grid_type
,
expan
,
"w"
);
gradient_op
->
setup_array
(
&
w
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
if
(
mm
==
0
)
{
gradient_op
->
get_dx
(
&
temp1
,
false
);
}
else
if
(
mm
==
1
)
{
gradient_op
->
get_dy
(
&
temp1
,
false
);
}
else
if
(
mm
==
2
)
{
gradient_op
->
get_dz
(
&
temp1
,
false
);
}
// Get u_{j,z}
find_expansion
(
grid_type
,
expan
,
vel_labs
[
nn
]);
gradient_op
->
setup_array
(
vel_nn
,
expan
[
0
],
expan
[
1
],
expan
[
2
]);
gradient_op
->
get_dz
(
&
temp2
,
false
);
*
A_ref
=
temp1
*
temp2
;
*
A_ref
=
(
*
A_ref
)
*
0.5
;
ctr
++
;
}
}
// Now for the eigenvalue algorithm from:
// https://en.wikipedia.org/wiki/Eigenvalue_algorithm#3%C3%973_matrices
// In the above article, we transform A into B=(1/p)*(A-qI)
// Then, lambda2 = q + 2*p*cos(arccos(det(B)/2)/3 + k*pi/3), k=0,1,2
// Define q
temp1
=
(
A11
+
A22
+
A33
)
/
3.0
;
// Define p
temp2
=
pow2
(
A11
-
temp1
)
+
pow2
(
A22
-
temp1
)
+
pow2
(
A33
-
temp1
)
+
2.0
*
(
pow2
(
A12
)
+
pow2
(
A13
)
+
pow2
(
A23
));
temp2
=
sqrt
(
temp2
/
6.0
);
// Transform A
A11
=
(
A11
-
temp1
)
/
temp2
;
A22
=
(
A22
-
temp1
)
/
temp2
;
A33
=
(
A33
-
temp1
)
/
temp2
;
A12
=
A12
/
temp2
;
A13
=
A13
/
temp2
;
A23
=
A23
/
temp2
;
// Calculate the determinant, using lambda2 as a dummy array
lambda2
=
0.5
*
(
A11
*
(
A22
*
A33
-
A23
*
A23
)
-
A12
*
(
A12
*
A33
-
A13
*
A23
)
+
A13
*
(
A12
*
A23
-
A13
*
A22
));
// Since det(B)/2 feeds into acos, make sure it's between -1 and 1
for
(
int
i
=
lambda2
.
lbound
(
blitz
::
firstDim
);
i
<=
lambda2
.
ubound
(
blitz
::
firstDim
);
i
++
)
{
// outer loop over slowest-varying dimension
for
(
int
k
=
lambda2
.
lbound
(
blitz
::
thirdDim
);
k
<=
lambda2
.
ubound
(
blitz
::
thirdDim
);
k
++
)
{
// middle loop over next-slowest varying dimension
for
(
int
j
=
lambda2
.
lbound
(
blitz
::
secondDim
);
j
<=
lambda2
.
ubound
(
blitz
::
secondDim
);
j
++
)
{
// inner loop over fastest varying dimeion
if
(
isnan
(
lambda2
(
i
,
j
,
k
)))
{
lambda2
(
i
,
j
,
k
)
=
0
;}
else
if
(
lambda2
(
i
,
j
,
k
)
<
-
1.0
)
{
lambda2
(
i
,
j
,
k
)
=
-
1.0
;}
else
if
(
lambda2
(
i
,
j
,
k
)
>
1.0
)
{
lambda2
(
i
,
j
,
k
)
=
1.0
;}
// first conditional works as a safety check because the det is NaN iff temp2=0; in this case the 2nd eig is temp1
}}}
// Now calculate the actual lamba2.
lambda2
=
temp1
+
2.0
*
temp2
*
cos
(
acos
(
lambda2
)
/
3.0
+
4.0
*
M_PI
/
3.0
);
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment