Skip to content
Snippets Groups Projects
Commit 7497ec3d authored by Peter Cai's avatar Peter Cai
Browse files

Initial plotting support for numa scan

parent 7b31dbf3
No related branches found
No related tags found
No related merge requests found
......@@ -11,3 +11,8 @@ colors = {
"kernel polling (configuration)": "tab:purple",
"irq packing": "tab:red",
}
patterns = {
"vanilla": "/",
"kernel polling (patched)": ".",
}
import os
import util
def parse_memcached_output(s):
lines = s.split('\n')
return int(float(lines[6].split(' ')[3]))
def parse_memcached_stat(s, qps):
lines = s.split('\n')
inst = 0
cycle = 0
for line in lines:
if line.startswith('#'):
continue
split = line.strip().split()
if len(split) <= 1:
continue
if int(float(split[0])) != 25:
continue
if split[2] == 'instructions:u' or split[2] == 'instructions:k':
inst += int(split[1].replace(',', ''))
if split[2] == 'cycles:u' or split[2] == 'cycles:k':
cycle += int(split[1].replace(',', ''))
return (float(inst) / 5 / qps, float(inst) / cycle)
def extract_numa_scan_exp(exp):
ret = ([], [], [], [], [], []) # QPS_mean, QPS_stddev, IPQ_mean, IPQ_stddev, IPC_mean, IPC_stddev
for t in [2, 4, 8, 16]:
f = 't' + str(t)
(qps_mean, qps_stddev) = \
util.extract_exp_avg_stddev(exp, f, parse_memcached_output)
stat = 'stat_' + f
((ipq_mean, ipq_stddev), (ipc_mean, ipc_stddev)) = \
util.extract_exp_avg_stddev(exp, stat, parse_memcached_stat, qps_mean)
ret[0].append(qps_mean)
ret[1].append(qps_stddev)
ret[2].append(ipq_mean)
ret[3].append(ipq_stddev)
ret[4].append(ipc_mean)
ret[5].append(ipc_stddev)
return ret
def collect_data(experiments):
ret = dict()
for exp in experiments:
ret[exp] = extract_numa_scan_exp(exp)
return ret
import matplotlib.pyplot as plt
from memcached_numa_scan import collect_data
import os
from config import colors, patterns
experiments = [
'memcached_numa_scan.5.15.79-peter', # vanilla
'memcached_numa_scan.5.15.79-peter.kernel_polling', # kernel_polling
]
labels = [
'vanilla',
'kernel polling (patched)',
]
def plot():
data = collect_data(experiments)
plt.cla()
plt.xticks([1, 2, 3, 4], ["1 + 1", "2 + 2", "4 + 4", "8 + 8"])
l = len(experiments)
for i in range(l):
offset = (0.4 * i + 0.2) - 0.4 * l / 2
exp = experiments[i]
plt.bar([1 + offset, 2 + offset, 3 + offset, 4 + offset], data[exp][0], 0.4, yerr = data[exp][1], capsize=4, label = labels[i], edgecolor = colors[labels[i]], hatch = patterns[labels[i]], fill = False)
plt.ylabel('Throughput')
plt.legend()
if os.getenv('SAVE_FIGURE') != 'true':
plt.rcParams.update({'font.size': 16})
plt.show()
else:
plt.savefig('../data/figs/memcached_numa_scan_qps.png', dpi = 192)
plot()
import os
import math
def extract_exp_avg_stddev(exp, datapoint, parser):
def extract_exp_avg_stddev(exp, datapoint, parser, *parser_args):
def my_parser(f):
p = os.path.join(os.getcwd(), '../data/', exp, f + '.txt')
if not os.path.exists(p):
return None
with open(p, 'r') as fi:
return parser(fi.read())
return parser(fi.read(), *parser_args)
acc = []
acc.append(my_parser(datapoint))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment