-
Peter Jentsch authoredPeter Jentsch authored
hh_durations_model.jl 2.00 KiB
const HHYMO = DataFrame(CSV.File("$PACKAGE_FOLDER/network-data/Timeuse/HH/HHYMO.csv"))
# This function applies pre-processing to the HHYMO data file, and splits it into a namedtuple, which should be faster to index.
# In particular, we avoid having to modify any strings in the error function.
const cnst_hh = (
# Set the underlying parameters for the intervals model
Sparam = [60,12],
# Set parameters for intervals sample and subpopulation size
numsamples = 10,
subsize = size(HHYMO)[1],
# Swap age brackets for numbers
swap = Dict("Y" => YOUNG, "M" => MIDDLE, "O" => OLD),
# Total weight in survey
Wghttotal = sum(HHYMO[:,"WGHT_PER"]),
)
function make_dat_array()
durs = hcat(
Int.(HHYMO[!,"YDUR"*string(cnst_hh.Sparam[2])]),
Int.(HHYMO[!,"MDUR"*string(cnst_hh.Sparam[2])]),
Int.(HHYMO[!,"ODUR"*string(cnst_hh.Sparam[2])]),
)
nums = hcat(
Int.(HHYMO[!,"YNUM"]),
Int.(HHYMO[!,"MNUM"]),
Int.(HHYMO[!,"ONUM"]),
)
WGHT = Weights(HHYMO[!,"WGHT_PER"]./cnst_hh.Wghttotal)
AGERESP = map(r -> cnst_hh.swap[r],HHYMO[!,"AGERESP"])
return (;
nums,
durs,
WGHT,
AGERESP
)
end
const dat = make_dat_array() #assign a constant data array
#error function for Normal distributions
function err_hh(p,dist)
params = get_params(p)
age_dists = [dist(params[i,j]...) for i in YOUNG:OLD, j in YOUNG:OLD]
duration_subarray = dat.durs
num_contacts_subarray = dat.nums
AGERESP = dat.AGERESP
errsum = 0
@inbounds for i = 1:cnst_hh.subsize
age_sample = AGERESP[i]
@inbounds for age_j in YOUNG:OLD #for a given age_sample loop over possible contact ages
durs = trunc.(Int,rand(rng,age_dists[age_sample,age_j],num_contacts_subarray[i,age_j])) .% durmax
expdur = tot_dur_sample(cnst_hh.numsamples,cnst_hh.Sparam,durs)
errsum += (expdur/cnst_hh.numsamples - duration_subarray[i,age_j])^2 #compute total
end
end
return errsum
end