Skip to content
Snippets Groups Projects
Commit 662c083c authored by Mark Penney's avatar Mark Penney
Browse files

No commit message

No commit message
parent 41f8e77b
No related branches found
No related tags found
No related merge requests found
%% Cell type:code id: tags:
``` python
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import optimize
import math
import random
import csv
import itertools
from itertools import product
def Flatten(A):
return list(itertools.chain.from_iterable(A))
```
%% Cell type:markdown id: tags:
# Average mixing numbers for Canadian population
To adjust the POLYMOD results to fit Canadian demographic structures, we take the distributions extracted from POLYMOD and rescale them so that their averages match those determined by Prem.
%% Cell type:code id: tags:
``` python
# Population statistics from Statcan 2019
N = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
N[0] = 1943175
N[1] = 2039352
N[2] = 2031762
N[3] = 2114635
N[4] = 2476698
N[5] = 2625474
N[6] = 2603938
N[7] = 2580021
N[8] = 2421009
N[9] = 2396406
N[10] = 2502667
N[11] = 2749626
N[12] = 2511888
N[13] = 2096607
N[14] = 1706760
N[15] = 1164277+786704+510828+242554+74086+10795 #75+
Ntot = np.sum(N)
# Load the Prem files
Malldf = pd.read_csv("Prem_Canada.csv")
Mall = Malldf.values.tolist()
Mhomedf = pd.read_csv("Prem_home.csv")
Mhome = Mhomedf.values.tolist()
Mschooldf = pd.read_csv("Prem_school.csv")
Mschool = Mschooldf.values.tolist()
Mworkdf = pd.read_csv("Prem_work.csv")
Mwork = Mworkdf.values.tolist()
Mrestdf = pd.read_csv("Prem_rest.csv")
Mrest = Mrestdf.values.tolist()
# Age brackets
Brac = ('Y','M','O')
Bracind = {'Y': (0,1,2,3,4), 'M': (5,6,7,8,9,10,11,12), 'O':(13,14,15)}
# Determine contact matrices
allCont = {}
homeCont = {}
wsCont = {}
restCont = {}
for x, y in list(product(Brac,Brac)):
tar = Bracind[y]
src = Bracind[x]
allSum = np.sum(Flatten([[N[j]*Mall[i][j] for i in tar] for j in src]))
homeSum = np.sum(Flatten([[N[j]*Mhome[i][j] for i in tar] for j in src]))
sSum = np.sum(Flatten([[N[j]*Mschool[i][j] for i in tar] for j in src]))
wSum = np.sum(Flatten([[N[j]*Mwork[i][j] for i in tar] for j in src]))
rSum = np.sum(Flatten([[N[j]*Mrest[i][j] for i in tar] for j in src]))
Num = np.sum([N[i] for i in src])
allCont[(x,y)] = allSum/Num
homeCont[(x,y)] = homeSum/Num
wsCont[(x,y)] = (wSum+sSum)/Num
restCont[(x,y)] = rSum/Num
```
%% Cell type:code id: tags:
``` python
# Saving a copy of the mixing matrices
swap = ['Y', 'M', 'O']
wsMat = np.full([3,3], 0.)
restMat = np.full([3,3], 0.)
for i, j in list(product(range(3), range(3))):
wsMat[i][j] = wsCont[(swap[i], swap[j])]
restMat[i][j] = restCont[(swap[i], swap[j])]
pd.DataFrame(wsMat).to_csv("wsMixing.csv", index=False)
pd.DataFrame(restMat).to_csv("restMixing.csv", index=False)
```
%% Cell type:code id: tags:
``` python
print(restMat)
```
%% Output
[[2.22220876 1.27618792 0.15504874]
[0.84971392 3.72295479 0.74083542]
[0.21683524 0.782842 0.66709872]]
%% Cell type:markdown id: tags:
## Rescaling workschool distributions from POLYMOD to Prem
Since the workschool distributions from POLYMOD are fit to a 2-variable distribution we have to make a choice as to how to adjust those parameters. We first modify only p, keeping alpha from POLYMOD fixed.
%% Cell type:code id: tags:
``` python
# Input the POLYMOD parameters
POLY = {('Y', 'Y'): [0.4378787156156721, 0.093112367309826], ('Y', 'M'): [0.4144210645686216, 0.2988493341114929], ('Y', 'O'): [0.9071801708997953, 0.8256463657373431], ('M', 'Y'): [0.76732665579341, 0.41260047034256747], ('M', 'M'): [0.421073517853328, 0.12039762005212719], ('M', 'O'): [0.8424225575069703, 0.5573421127782885], ('O', 'Y'): [0.8976481193486225, 0.40369064730244425], ('O', 'M'): [0.7855029449186991, 0.33072950060358974], ('O', 'O'): [0.9407010943356611, 0.4756835100017134]}
```
%% Cell type:code id: tags:
``` python
Premparams = {}
for x, y in list(product(Brac,Brac)):
paramval = (1-POLY[(x,y)][0])/wsCont[(x,y)]
if paramval <1:
Premparams[(x,y)] = ['geo', POLY[(x,y)][0], paramval ]
else:
Premparams[(x,y)] = ['pois', POLY[(x,y)][0], 1/paramval ]
```
%% Cell type:code id: tags:
``` python
print(Premparams)
```
%% Cell type:code id: tags:
``` python
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment