Newer
Older
'''
Authors: Sridhar Gopinath, Nishant Kumar.
Copyright:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import operator
from functools import reduce
import AST.AST as AST
from AST.ASTVisitor import ASTVisitor
from enum import Enum, auto
import copy
class Type:
pass
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
'''
We want to analyse the taint of every tensor that flows in the graph.
The possible taints for tensors are:
{
Client: Input to the ML model (eg: the image input)
Server: The weights of the model
ClientXServer[C&S]: A tensor that is dervied after operations on both client and server tensors.
Secret_constant: A tensor that is a constant but declared as a secret
Public_constant: A tensor that is a constant but declared as public
}
Note: For ML models we don't expect to encounter any secret_constants and instead expect them
to be encoded as weights of the model and so instead has the server taint.
We infer taints in the following manner:
Client Server C&S Secret_constant Public_constant
Client Client C&S C&S Client Client
Server C&S Server C&S Server Server
C&S C&S C&S C&S C&S C&S
Secret_constant C&S C&S C&S Secret_constant Secret_constant
Public_constant Client Server C&S Secret_constant Public_constant
'''
class Taints(Enum):
CLIENT = auto()
SERVER = auto()
CLIENT_SERVER = auto()
SECRET_C = auto()
PUBLIC_C = auto()
constantTaintsMapping = { True : Taints.SECRET_C, False : Taints.PUBLIC_C}
TaintsTable = {
Taints.CLIENT : {
Taints.CLIENT : Taints.CLIENT,
Taints.SERVER : Taints.CLIENT_SERVER,
Taints.CLIENT_SERVER: Taints.CLIENT_SERVER,
Taints.SECRET_C: Taints.CLIENT,
Taints.PUBLIC_C: Taints.CLIENT
},
Taints.SERVER : {
Taints.CLIENT : Taints.CLIENT_SERVER,
Taints.SERVER : Taints.SERVER,
Taints.CLIENT_SERVER: Taints.CLIENT_SERVER,
Taints.SECRET_C: Taints.SERVER,
Taints.PUBLIC_C: Taints.SERVER
},
Taints.CLIENT_SERVER : {
Taints.CLIENT : Taints.CLIENT_SERVER,
Taints.SERVER : Taints.CLIENT_SERVER,
Taints.CLIENT_SERVER: Taints.CLIENT_SERVER,
Taints.SECRET_C: Taints.CLIENT_SERVER,
Taints.PUBLIC_C: Taints.CLIENT_SERVER
},
Taints.SECRET_C : {
Taints.CLIENT : Taints.CLIENT,
Taints.SERVER : Taints.SERVER,
Taints.CLIENT_SERVER: Taints.CLIENT_SERVER,
Taints.SECRET_C: Taints.SECRET_C,
Taints.PUBLIC_C: Taints.SECRET_C
},
Taints.PUBLIC_C : {
Taints.CLIENT : Taints.CLIENT,
Taints.SERVER : Taints.SERVER,
Taints.CLIENT_SERVER: Taints.CLIENT_SERVER,
Taints.SECRET_C: Taints.SECRET_C,
Taints.PUBLIC_C: Taints.PUBLIC_C
}
}
def getTaint_taint(t1: Taints, t2: Taints):
return TaintsTable[t1][t2]
def getTaint_type(t1: Type, t2: Type):
return TaintsTable[t1.taint][t2.taint]
def __init__(self, bitlen=-1, isSecret=False, taint=Taints.PUBLIC_C):
if bitlen==-1:
self.bitlen = Util.Config.wordLength
else:
self.bitlen = bitlen
self.isSecret = isSecret
self.taint = taint
def __copy__(self):
return type(self)(self.bitlen, self.isSecret, self.taint)
class Unit(Type):
pass
class Tensor(Type):
def __init__(self, shape:list, bitlen=-1, isSecret=True, taint=Taints.PUBLIC_C):
self.shape = shape
self.dim = len(shape)
if bitlen==-1:
self.bitlen = Util.Config.wordLength
else:
self.bitlen = bitlen
self.isSecret = isSecret
self.taint = taint
def __copy__(self):
return type(self)(self.shape, self.bitlen, self.isSecret, self.taint)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def size(self):
return reduce(operator.mul, self.shape, 1)
# Tensor without any dimension (float) or a tensor with all dimensions equal to 1
def isShapeOne(self):
return self.dim == 0 or self.size() == 1
def isInt(type:Type):
return isinstance(type, Int)
def isTensor(type:Type):
return isinstance(type, Tensor)
def isUnit(type:Type):
return isinstance(type, Unit)
def isEqual(type1:Type, type2:Type):
if isInt(type1) and isInt(type2):
return True
elif isTensor(type1) and isTensor(type2):
if type1.dim != type2.dim:
return False
return type1.shape == type2.shape
else:
assert False
class InferType(ASTVisitor):
def visitInt(self, node:AST.Int, args=None):
bitlen = Util.Config.wordLength
if node.bitLen:
bitlen = node.bitLen
node.type = Int(bitlen, node.isSecret, constantTaintsMapping[node.isSecret])
return node.type
def visitFloat(self, node:AST.Float, args=None):
# Float is represented as an int in fixedpt.
node.type = Int(isSecret=node.isSecret, taint=constantTaintsMapping[node.isSecret])
return node.type
def visitId(self, node:AST.ID, args=None):
if node.name not in node.gamma:
print("Error in type checking: Found id which is not contained in gamma.", file=sys.stderr)
assert(False)
else:
node.type = node.gamma[node.name]
return node.type
def visitDecl(self, node:AST.Decl, args=None):
if (node.shape == []):
node.type = Int(isSecret=node.isSecret, taint=constantTaintsMapping[node.isSecret])
else:
node.type = Tensor(shape=node.shape, isSecret=node.isSecret, taint=constantTaintsMapping[node.isSecret])
return node.type
shubham ugare
committed
def visitTranspose(self, node:AST.Transpose, args=None):
node.expr.gamma = dict(node.gamma)
exprType = self.visit(node.expr)
assert isTensor(exprType)
perm = node.perm
shape = exprType.shape
if (perm is None):
perm = [i for i in reversed(range(len(shape)))]
shubham ugare
committed
new_shape = []
for i in perm:
new_shape.append(shape[i])
node.type = Tensor(new_shape, exprType.bitlen, exprType.isSecret, exprType.taint)
shubham ugare
committed
return node.type
def visitSlice(self, node:AST.Slice, args=None):
node.expr.gamma = dict(node.gamma)
exprType = self.visit(node.expr)
assert isTensor(exprType)
subscriptRanges = node.subscriptRanges
shape = []
for i in subscriptRanges:
start = i[0]
end = i[1]
size = end - start + 1
shape.append(size)
assert(len(shape) == len(exprType.shape))
for i in range(0,len(shape)):
assert(shape[i] <= exprType.shape[i])
node.type = Tensor(shape, exprType.bitlen, exprType.isSecret, exprType.taint)
return node.type
def visitReshape(self, node:AST.Reshape, args=None):
node.expr.gamma = dict(node.gamma)
exprType = self.visit(node.expr)
assert isTensor(exprType) and exprType.dim >= 1
# Reshape is valid if the total number of elements remain same after reshape
assert reduce(operator.mul, exprType.shape, 1) == reduce(operator.mul, node.shape, 1)
node.type = Tensor(node.shape, exprType.bitlen, exprType.isSecret, exprType.taint)
return node.type
def visitPool(self, node:AST.Pool, args=None):
node.expr.gamma = dict(node.gamma)
exprType = self.visit(node.expr)
# Implementation only performs maxpool over a 4D input
assert isTensor(exprType) and exprType.dim == 4
[N, H, W, CI] = exprType.shape
FH = node.options[AST.PaddingKeysDict.FH]
FW = node.options[AST.PaddingKeysDict.FW]
zPadHLeft = node.options[AST.PaddingKeysDict.zPadHLeft]
zPadHRight = node.options[AST.PaddingKeysDict.zPadHRight]
zPadWLeft = node.options[AST.PaddingKeysDict.zPadWLeft]
zPadWRight = node.options[AST.PaddingKeysDict.zPadWRight]
strideH = node.options[AST.PaddingKeysDict.strideH]
strideW = node.options[AST.PaddingKeysDict.strideW]
newH = ((H + zPadHLeft + zPadHRight - FH)//strideH) + 1
newW = ((W + zPadWLeft + zPadWRight - FW)//strideW) + 1
node.type = Tensor([N, newH, newW, CI], exprType.bitlen, exprType.isSecret, exprType.taint)
return node.type
def visitUOp(self, node:AST.UOp, args=None):
node.expr.gamma = dict(node.gamma)
node.type = self.visit(node.expr)
return node.type
def visitBOp(self, node:AST.BOp, args=None):
node.expr1.gamma = dict(node.gamma)
eType = self.visit(node.expr1)
node.expr2.gamma = dict(node.gamma)
fType = self.visit(node.expr2)
if node.op in [AST.Operators.ADD, AST.Operators.ElemWiseMul, AST.Operators.ElemWiseDiv]:
# Ops supporting broadcasting
return self.typeCheckBroadcastOps(node, eType, fType)
elif node.op in [AST.Operators.SUB, AST.Operators.Equal]:
return self.visitBopAddLike(node, eType, fType)
elif node.op == AST.Operators.MUL:
return self.visitBopMul(node, eType, fType)
elif node.op == AST.Operators.CONV:
return self.visitBopConv(node, eType, fType)
shubham ugare
committed
elif node.op == AST.Operators.CONVTRANSPOSE:
return self.visitBopConvTranspose(node, eType, fType)
else:
assert False
def typeCheckBroadcastOps(self, node:AST.BOp, eType:Type, fType:Type):
# Ops which support broadcasting have different type checking
# If adding a new op here which supports broadcasting, then be careful!
# Currently, its assumed the op is commutative. If that is not true, following will be wrong !
assert node.op in [AST.Operators.ADD, AST.Operators.ElemWiseMul, AST.Operators.ElemWiseDiv]
if (len(eType.shape) < len(fType.shape)):
# swap expr1 and expr2 -- this is valid for commutative ops
# be careful for ops which are not commutative
temp = node.expr1
node.expr1 = node.expr2
node.expr2 = temp
temp = eType
eType = fType
fType = temp
# Now true that dim(eType) >= dim(fTYpe)
assert len(eType.shape) >= len(fType.shape)
if isInt(eType) and isInt(fType):
elif isTensor(eType) and isTensor(fType):
revETypeShape = eType.shape[::-1]
revFTypeShape = fType.shape[::-1]
for i, fTypeCurDim in enumerate(revFTypeShape):
eTypeCurDim = revETypeShape[i]
if not(eTypeCurDim==1 or fTypeCurDim==1 or eTypeCurDim==fTypeCurDim):
# broadcast not possible - raise error
print("Broadcast not possible for current node.", eType.shape, fType.shape)
assert False
# Broadcast possible
else:
print(eType, fType)
assert False
node.type.taint = getTaint_type(eType, fType)
node.type.isSecret = eType.isSecret | fType.isSecret
return node.type
def visitBopMul(self, node:AST.BOp, eType:Type, fType:Type, args=None):
if isInt(eType) and isInt(fType):
node.type = Int(eType.bitlen, eType.isSecret)
elif isTensor(eType) and isTensor(fType):
if eType.dim == 0:
elif fType.dim == 0:
else:
assert eType.dim == 2 and fType.dim == 2
[n1, n2] = eType.shape
[n3, n4] = fType.shape
assert n2 == n3
node.type = Tensor([n1, n4], eType.bitlen)
else:
print("Error: Unknown condition in type checking.", file=sys.stderr)
assert(False)
node.type.taint = getTaint_type(eType, fType)
node.type.isSecret = eType.isSecret | fType.isSecret
return node.type
def visitBopConv(self, node:AST.BOp, eType:Type, fType:Type, args=None):
assert isTensor(eType) and isTensor(fType)
shubham ugare
committed
convDim = 2
group = 1
if AST.PaddingKeysDict.ConvDim in node.options:
convDim = node.options[AST.PaddingKeysDict.ConvDim]
if convDim==2:
assert eType.dim == 4 and fType.dim == 4
elif convDim==3:
assert eType.dim == 5 and fType.dim == 5
else:
assert(False)
shubham ugare
committed
N = D = H = W = CI = FD = FH = FW = CI1 = CO = -1
newD = -1
if (convDim == 2):
[N, H, W, CI] = eType.shape
[FH, FW, CI1, CO] = fType.shape
elif (convDim == 3):
[N, D, H, W, CI] = eType.shape
[FD, FH, FW, CI1, CO] = fType.shape
assert(FD == node.options[AST.PaddingKeysDict.FD])
zPadDLeft = node.options[AST.PaddingKeysDict.zPadDLeft]
zPadDRight = node.options[AST.PaddingKeysDict.zPadDRight]
strideD = node.options[AST.PaddingKeysDict.strideD]
newD = ((D + zPadDLeft + zPadDRight - FD)//strideD) + 1
else:
assert(False)
if AST.PaddingKeysDict.group in node.options:
group = node.options[AST.PaddingKeysDict.group]
assert(FH == node.options[AST.PaddingKeysDict.FH])
assert(FW == node.options[AST.PaddingKeysDict.FW])
shubham ugare
committed
assert(CI1*group == CI)
zPadHLeft = node.options[AST.PaddingKeysDict.zPadHLeft]
zPadHRight = node.options[AST.PaddingKeysDict.zPadHRight]
zPadWLeft = node.options[AST.PaddingKeysDict.zPadWLeft]
zPadWRight = node.options[AST.PaddingKeysDict.zPadWRight]
strideH = node.options[AST.PaddingKeysDict.strideH]
strideW = node.options[AST.PaddingKeysDict.strideW]
newH = ((H + zPadHLeft + zPadHRight - FH)//strideH) + 1
newW = ((W + zPadWLeft + zPadWRight - FW)//strideW) + 1
shubham ugare
committed
if convDim == 2:
shape = [N, newH, newW, CO]
elif convDim == 3:
shape = [N, newD, newH, newW, CO]
node.type = Tensor(shape, eType.bitlen, eType.isSecret | fType.isSecret, getTaint_type(eType, fType))
shubham ugare
committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
return node.type
def visitBopConvTranspose(self, node:AST.BOp, eType:Type, fType:Type, args=None):
assert isTensor(eType) and isTensor(fType)
convDim = 2
if AST.PaddingKeysDict.ConvDim in node.options:
convDim = node.options[AST.PaddingKeysDict.ConvDim]
if convDim==2:
[N, HP, WP, CI1] = eType.shape
[FH, FW, CO, CI] = fType.shape
elif convDim==3:
[N, DP, HP, WP, CI1] = eType.shape
[FD, FH, FW, CO, CI] = fType.shape
else:
assert(False)
assert(CI1 == CI)
if convDim==3:
outputImgD = node.options[AST.PaddingKeysDict.outputImgD]
outputImgH = node.options[AST.PaddingKeysDict.outputImgH]
outputImgW = node.options[AST.PaddingKeysDict.outputImgW]
if convDim==2:
shape = [N, outputImgH, outputImgW, CO]
else:
shape = [N, outputImgD, outputImgH, outputImgW, CO]
# Logic explanation:
# ConvTranpose can be thought of as the inverse of some convolution for which it is doing the upsampling.
# For calculation of padding in the convTranspose operation, the output image size is required.
# This is why TF also mandates the operator to be specified with output size.
# This conv transpose operation can be thought of as conv between output
# of size shape = [N, outputImgH, outputImgW, CI], and filter of size [FH, FW, CI, CO].
# Hence, the input for this convTranspose would be [N, HP, WP, CO]
node.type = Tensor(shape, eType.bitlen, eType.isSecret | fType.isSecret, getTaint_type(eType, fType))
return node.type
def visitBopAddLike(self, node:AST.BOp, eType: Type, fType: Type, args=None):
if isInt(eType) and isInt(fType):
pass
elif isTensor(eType) and isTensor(fType):
assert eType.shape == fType.shape
else:
assert False
node.type = copy.copy(eType)
node.type.taint = getTaint_type(eType, fType)
node.type.isSecret = eType.isSecret | fType.isSecret
return node.type
def visitFunc(self, node:AST.Func, args=None):
node.expr.gamma = dict(node.gamma)
eType = self.visit(node.expr)
if node.op == AST.Operators.RELU:
assert isTensor(eType) and eType.dim >= 1
node.type = copy.copy(eType)
elif node.op == AST.Operators.TANH:
assert isTensor(eType)
node.type = copy.copy(eType)
elif node.op == AST.Operators.SIGMOID:
assert isTensor(eType)
node.type = copy.copy(eType)
elif node.op == AST.Operators.SQRT:
assert isTensor(eType)
node.type = copy.copy(eType)
elif node.op == AST.Operators.RSQRT:
assert isTensor(eType)
node.type = copy.copy(eType)
elif node.op == AST.Operators.Floor:
elif node.op == AST.Operators.Shape:
assert isTensor(eType)
node.type = Tensor([len(eType.shape)], eType.bitlen, eType.isSecret, eType.taint)
elif node.op == AST.Operators.ClearMemSecret:
node.type = Unit()
elif node.op == AST.Operators.ClearMemPublic:
node.type = Unit()
else:
print("Type inference not implemented for", node.op)
assert False
return node.type
def visitLet(self, node:AST.Let, args=None):
node.decl.gamma = dict(node.gamma)
eType = self.visit(node.decl)
node.name.gamma = { node.name.name : eType}
self.visit(node.name)
node.expr.gamma = dict(node.gamma)
node.expr.gamma[node.name.name] = eType
fType = self.visit(node.expr)
return node.type
def visitUninterpFuncCall(self, node:AST.UninterpFuncCall, args=None):
# Assert that outputShape and inputDims are lists of int astNode.
assert(len(node.argsList) > 0)
isSecret = False
taint = Taints.PUBLIC_C
for curArg in node.argsList:
curArg.gamma = dict(node.gamma)
eType = self.visit(curArg) #This should set the type of each of the input nodes
isSecret = isSecret | eType.isSecret
taint = getTaint_taint(taint, eType.taint)
outputShape = node.outputShape
node.type = Tensor(outputShape, isSecret=isSecret, taint=taint)
return node.type
def visitArgMax(self, node:AST.ArgMax, args=None):
node.expr.gamma = dict(node.gamma)
node.dim.gamma = dict(node.gamma)
dimType = self.visit(node.dim)
assert(isInt(dimType) or (isTensor(dimType) and (len(dimType.shape)==0)))
node.type = Tensor(node.outputShape, eType.bitlen, eType.isSecret, eType.taint)
return node.type
def visitReduce(self, node:AST.Reduce, args=None):
cur_gamma = dict(node.gamma)
node.expr.gamma = cur_gamma
node.type = Tensor(node.outShape, eType.bitlen, eType.isSecret, eType.taint)
return node.type
def visitInput(self, node:AST.Input, args=None):
node.type = Tensor(node.shape, isSecret=node.isSecret, taint=Taints[node.inputByParty.name])
return node.type
def visitFusedBatchNorm(self, node:AST.FusedBatchNorm, args=None):
cur_gamma = dict(node.gamma)
node.expr.gamma = cur_gamma
node.multExpr.gamma = cur_gamma
node.addExpr.gamma = cur_gamma
exprType = self.visit(node.expr)
multExprType = self.visit(node.multExpr)
addExprType = self.visit(node.addExpr)
assert(len(multExprType.shape)==1)
assert(len(addExprType.shape)==1)
[C1] = multExprType.shape
[C2] = addExprType.shape
assert(exprType.shape[-1]==C1 and C1==C2)
taint = getTaint_taint(exprType.taint, multExprType.taint)
taint = getTaint_taint(taint, addExprType.taint)
node.type = copy.copy(exprType)
node.type.taint = taint
return node.type