Skip to content
Snippets Groups Projects
Commit 99ecfb6c authored by osimeoni's avatar osimeoni
Browse files

Command line improvement

parent 80f2fb52
No related branches found
No related tags found
No related merge requests found
...@@ -168,17 +168,18 @@ mkdir $D2/configs/LOST ...@@ -168,17 +168,18 @@ mkdir $D2/configs/LOST
ln -s $LOST/tools/configs/* $D2/configs/LOST/. # Move LOST configs to D2 ln -s $LOST/tools/configs/* $D2/configs/LOST/. # Move LOST configs to D2
``` ```
### Training a Class-Agnostic Detector (CAD) with LOST pseudo-annotations. ### Training a Class-Agnostic Detector (CAD) with LOST pseudo-annotations
Before launching a training, data must be formated to fit detectron2 and COCO styles. Following are the command lines to do this formatting for boxes predicted with LOST. Before launching a training, data must be formated to fit detectron2 and COCO styles. Following are the command lines to do this formatting for boxes predicted with LOST.
```bash ```bash
cd $D2; cd $D2;
# Format DINO weights to fit detectron2 # Format DINO weights to fit detectron2
python tools/convert_pretrained_to_detectron_format.py --input path/to/dino/weights.pkl --output ./data/dino_RN50_pretrain_d2_format.pkl wget https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth -P ./data # Download the model from DINO
python tools/convert_pretrained_to_detectron_format.py --input ./data/dino_resnet50_pretrain.pth --output ./data/dino_RN50_pretrain_d2_format.pkl
# Format pseudo-boxes data to fit detectron2 # Format pseudo-boxes data to fit detectron2
python tools/prepare_voc_LOST_CAD_pseudo_boxes_in_detectron2_format.py --year 2007 --pboxes $LOST/data/LOST_predictions/LOST_VOC07.pkl # for VOC07 python tools/prepare_voc_LOST_CAD_pseudo_boxes_in_detectron2_format.py --year 2007 --pboxes $LOST/data/LOST_predictions/LOST_VOC07.pkl
# Format VOC data to fit COCO style # Format VOC data to fit COCO style
python tools/prepare_voc_data_in_coco_style.py --is_CAD --voc07_dir $LOST/datasets/VOC2007 --voc12_dir $LOST/datasets/VOC2012 python tools/prepare_voc_data_in_coco_style.py --is_CAD --voc07_dir $LOST/datasets/VOC2007 --voc12_dir $LOST/datasets/VOC2012
...@@ -239,7 +240,8 @@ python cluster_for_OD.py --pred_file $LOST/data/LOST_predictions/LOST_VOC07.pkl ...@@ -239,7 +240,8 @@ python cluster_for_OD.py --pred_file $LOST/data/LOST_predictions/LOST_VOC07.pkl
cd $D2; cd $D2;
# Format DINO weights to fit detectron2 # Format DINO weights to fit detectron2
python tools/convert_pretrained_to_detectron_format.py --input path/to/dino/weights.pkl --output ./data/dino_RN50_pretrain_d2_format.pkl wget https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth -P ./data # Download the model from DINO
python tools/convert_pretrained_to_detectron_format.py --input ./data/dino_resnet50_pretrain.pth --output ./data/dino_RN50_pretrain_d2_format.pkl
# Prepare the clustered LOST pseudo-box data for training # Prepare the clustered LOST pseudo-box data for training
python tools/prepare_voc_LOST_OD_pseudo_boxes_in_detectron2_format.py --year 2007 --pboxes $LOST/data/LOST_predictions/LOST_VOC07_clustered_20clu.pkl python tools/prepare_voc_LOST_OD_pseudo_boxes_in_detectron2_format.py --year 2007 --pboxes $LOST/data/LOST_predictions/LOST_VOC07_clustered_20clu.pkl
...@@ -247,11 +249,12 @@ python tools/prepare_voc_LOST_OD_pseudo_boxes_in_detectron2_format.py --year 200 ...@@ -247,11 +249,12 @@ python tools/prepare_voc_LOST_OD_pseudo_boxes_in_detectron2_format.py --year 200
# Format VOC data to fit COCO style # Format VOC data to fit COCO style
python tools/prepare_voc_data_in_coco_style.py --voc07_dir $LOST/datasets/VOC2007 --voc12_dir $LOST/datasets/VOC2012 python tools/prepare_voc_data_in_coco_style.py --voc07_dir $LOST/datasets/VOC2007 --voc12_dir $LOST/datasets/VOC2012
# Train the detector on VOC2007 trainval set. # Train the detector on VOC2007 trainval set -- please be aware that no hungarian matching is used during training, so validation restuls are not meaningful (will be close to 0). Please use command bellow in order to evaluate results correctly.
python tools/train_net_for_LOST_OD.py --num-gpus 4 --config-file ./configs/LOST/RN50_DINO_FRCNN_VOC07_OD.yaml DATALOADER.NUM_WORKERS 8 OUTPUT_DIR ./outputs/RN50_DINO_FRCNN_VOC07_OD MODEL.WEIGHTS ./data/dino_RN50_pretrain_d2_format.pkl python tools/train_net_for_LOST_OD.py --num-gpus 8 --config-file ./configs/LOST/RN50_DINO_FRCNN_VOC07_OD.yaml DATALOADER.NUM_WORKERS 8 OUTPUT_DIR ./outputs/RN50_DINO_FRCNN_VOC07_OD MODEL.WEIGHTS ./data/dino_RN50_pretrain_d2_format.pkl
# Evaluate the detector results using hungarian matching # Evaluate the detector results using hungarian matching -- allows to reproduce results from the paper
python evaluate_unsupervised_detection_voc.py --result ./RN50_DINO_FRCNN_VOC07_OD/inference/coco_instances_results_voc_2007_test.json cd $LOST;
python tools/evaluate_unsupervised_detection_voc.py --results ./detectron2/outputs/RN50_DINO_FRCNN_VOC07_OD/inference/coco_instances_results.json
``` ```
### Training details ### Training details
......
...@@ -12,6 +12,8 @@ MODEL: ...@@ -12,6 +12,8 @@ MODEL:
ROI_HEADS: ROI_HEADS:
NAME: "Res5ROIHeadsExtraNorm" NAME: "Res5ROIHeadsExtraNorm"
NUM_CLASSES: 20 NUM_CLASSES: 20
SCORE_THRESH_TEST: 0.005
NMS_THRESH_TEST: 0.4
BACKBONE: BACKBONE:
FREEZE_AT: 2 FREEZE_AT: 2
ROI_BOX_HEAD: ROI_BOX_HEAD:
......
...@@ -12,6 +12,8 @@ MODEL: ...@@ -12,6 +12,8 @@ MODEL:
ROI_HEADS: ROI_HEADS:
NAME: "Res5ROIHeadsExtraNorm" NAME: "Res5ROIHeadsExtraNorm"
NUM_CLASSES: 20 NUM_CLASSES: 20
SCORE_THRESH_TEST: 0.005
NMS_THRESH_TEST: 0.4
BACKBONE: BACKBONE:
FREEZE_AT: 2 FREEZE_AT: 2
ROI_BOX_HEAD: ROI_BOX_HEAD:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment