Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
E
ece613-lost
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Spencer Delcore
ece613-lost
Commits
d88be3e4
Commit
d88be3e4
authored
2 years ago
by
Akinmukomi Oluwaseun
Browse files
Options
Downloads
Patches
Plain Diff
Added AP50 Calculation
parent
8fc57a85
No related branches found
No related tags found
1 merge request
!1
- Added code for ap50 calculation
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
main_lost.py
+395
-377
395 additions, 377 deletions
main_lost.py
with
395 additions
and
377 deletions
main_lost.py
+
395
−
377
View file @
d88be3e4
# Copyright 2021 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
import
random
import
pickle
import
torch
import
torch.nn
as
nn
import
numpy
as
np
from
tqdm
import
tqdm
from
PIL
import
Image
from
networks
import
get_model
from
datasets
import
ImageDataset
,
Dataset
,
bbox_iou
from
visualizations
import
visualize_fms
,
visualize_predictions
,
visualize_seed_expansion
from
object_discovery
import
lost
,
detect_box
,
dino_seg
if
__name__
==
"
__main__
"
:
parser
=
argparse
.
ArgumentParser
(
"
Unsupervised object discovery with LOST.
"
)
parser
.
add_argument
(
"
--arch
"
,
default
=
"
vit_small
"
,
type
=
str
,
choices
=
[
"
vit_tiny
"
,
"
vit_small
"
,
"
vit_base
"
,
"
resnet50
"
,
"
vgg16_imagenet
"
,
"
resnet50_imagenet
"
,
],
help
=
"
Model architecture.
"
,
)
parser
.
add_argument
(
"
--patch_size
"
,
default
=
16
,
type
=
int
,
help
=
"
Patch resolution of the model.
"
)
# Use a dataset
parser
.
add_argument
(
"
--dataset
"
,
default
=
"
VOC07
"
,
type
=
str
,
choices
=
[
None
,
"
VOC07
"
,
"
VOC12
"
,
"
COCO20k
"
],
help
=
"
Dataset name.
"
,
)
parser
.
add_argument
(
"
--set
"
,
default
=
"
train
"
,
type
=
str
,
choices
=
[
"
val
"
,
"
train
"
,
"
trainval
"
,
"
test
"
],
help
=
"
Path of the image to load.
"
,
)
# Or use a single image
parser
.
add_argument
(
"
--image_path
"
,
type
=
str
,
default
=
None
,
help
=
"
If want to apply only on one image, give file path.
"
,
)
# Folder used to output visualizations and
parser
.
add_argument
(
"
--output_dir
"
,
type
=
str
,
default
=
"
outputs
"
,
help
=
"
Output directory to store predictions and visualizations.
"
)
# Evaluation setup
parser
.
add_argument
(
"
--no_hard
"
,
action
=
"
store_true
"
,
help
=
"
Only used in the case of the VOC_all setup (see the paper).
"
)
parser
.
add_argument
(
"
--no_evaluation
"
,
action
=
"
store_true
"
,
help
=
"
Compute the evaluation.
"
)
parser
.
add_argument
(
"
--save_predictions
"
,
default
=
True
,
type
=
bool
,
help
=
"
Save predicted bouding boxes.
"
)
parser
.
add_argument
(
"
--num_init_seeds
"
,
default
=
1
,
type
=
int
,
help
=
"
Number of initial seeds to expand from.
"
)
# Visualization
parser
.
add_argument
(
"
--visualize
"
,
type
=
str
,
choices
=
[
"
fms
"
,
"
seed_expansion
"
,
"
pred
"
,
None
],
default
=
None
,
help
=
"
Select the different type of visualizations.
"
,
)
# For ResNet dilation
parser
.
add_argument
(
"
--resnet_dilate
"
,
type
=
int
,
default
=
2
,
help
=
"
Dilation level of the resnet model.
"
)
# LOST parameters
parser
.
add_argument
(
"
--which_features
"
,
type
=
str
,
default
=
"
k
"
,
choices
=
[
"
k
"
,
"
q
"
,
"
v
"
],
help
=
"
Which features to use
"
,
)
parser
.
add_argument
(
"
--k_patches
"
,
type
=
int
,
default
=
100
,
help
=
"
Number of patches with the lowest degree considered.
"
)
# Use dino-seg proposed method
parser
.
add_argument
(
"
--dinoseg
"
,
action
=
"
store_true
"
,
help
=
"
Apply DINO-seg baseline.
"
)
parser
.
add_argument
(
"
--dinoseg_head
"
,
type
=
int
,
default
=
4
)
args
=
parser
.
parse_args
()
if
args
.
image_path
is
not
None
:
args
.
save_predictions
=
False
args
.
no_evaluation
=
True
args
.
dataset
=
None
# -------------------------------------------------------------------------------------------------------
# Dataset
# If an image_path is given, apply the method only to the image
if
args
.
image_path
is
not
None
:
dataset
=
ImageDataset
(
args
.
image_path
)
else
:
dataset
=
Dataset
(
args
.
dataset
,
args
.
set
,
args
.
no_hard
)
# -------------------------------------------------------------------------------------------------------
# Model
device
=
torch
.
device
(
"
cuda
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"
cpu
"
)
print
(
"
Running on device:
"
,
device
)
model
=
get_model
(
args
.
arch
,
args
.
patch_size
,
args
.
resnet_dilate
,
device
)
# -------------------------------------------------------------------------------------------------------
# Directories
if
args
.
image_path
is
None
:
args
.
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
dataset
.
name
)
os
.
makedirs
(
args
.
output_dir
,
exist_ok
=
True
)
# Naming
if
args
.
dinoseg
:
# Experiment with the baseline DINO-seg
if
"
vit
"
not
in
args
.
arch
:
raise
ValueError
(
"
DINO-seg can only be applied to tranformer networks.
"
)
exp_name
=
f
"
{
args
.
arch
}
-
{
args
.
patch_size
}
_dinoseg-head
{
args
.
dinoseg_head
}
"
else
:
# Experiment with LOST
exp_name
=
f
"
LOST-
{
args
.
arch
}
"
if
"
resnet
"
in
args
.
arch
:
exp_name
+=
f
"
dilate
{
args
.
resnet_dilate
}
"
elif
"
vit
"
in
args
.
arch
:
exp_name
+=
f
"
{
args
.
patch_size
}
_
{
args
.
which_features
}
"
print
(
f
"
Running LOST on the dataset
{
dataset
.
name
}
(exp:
{
exp_name
}
)
"
)
# Visualization
if
args
.
visualize
:
vis_folder
=
f
"
{
args
.
output_dir
}
/visualizations/
{
exp_name
}
"
os
.
makedirs
(
vis_folder
,
exist_ok
=
True
)
# -------------------------------------------------------------------------------------------------------
# Loop over images
preds_dict
=
{}
gt_dict
=
{}
cnt
=
0
corloc
=
np
.
zeros
(
len
(
dataset
.
dataloader
))
pbar
=
tqdm
(
dataset
.
dataloader
)
for
im_id
,
inp
in
enumerate
(
pbar
):
torch
.
cuda
.
empty_cache
()
# ------------ IMAGE PROCESSING -------------------------------------------
img
=
inp
[
0
]
init_image_size
=
img
.
shape
# Get the name of the image
im_name
=
dataset
.
get_image_name
(
inp
[
1
])
# Pass in case of no gt boxes in the image
if
im_name
is
None
:
continue
# Padding the image with zeros to fit multiple of patch-size
size_im
=
(
img
.
shape
[
0
],
int
(
np
.
ceil
(
img
.
shape
[
1
]
/
args
.
patch_size
)
*
args
.
patch_size
),
int
(
np
.
ceil
(
img
.
shape
[
2
]
/
args
.
patch_size
)
*
args
.
patch_size
),
)
paded
=
torch
.
zeros
(
size_im
)
paded
[:,
:
img
.
shape
[
1
],
:
img
.
shape
[
2
]]
=
img
img
=
paded
# Move to gpu
if
device
==
torch
.
device
(
"
cuda
"
):
img
=
img
.
cuda
(
non_blocking
=
True
)
# Size for transformers
w_featmap
=
img
.
shape
[
-
2
]
//
args
.
patch_size
h_featmap
=
img
.
shape
[
-
1
]
//
args
.
patch_size
# ------------ GROUND-TRUTH -------------------------------------------
if
not
args
.
no_evaluation
:
gt_bbxs
,
gt_cls
=
dataset
.
extract_gt
(
inp
[
1
],
im_name
)
if
gt_bbxs
is
not
None
:
# Discard images with no gt annotations
# Happens only in the case of VOC07 and VOC12
if
gt_bbxs
.
shape
[
0
]
==
0
and
args
.
no_hard
:
continue
# ------------ EXTRACT FEATURES -------------------------------------------
with
torch
.
no_grad
():
# ------------ FORWARD PASS -------------------------------------------
if
"
vit
"
in
args
.
arch
:
# Store the outputs of qkv layer from the last attention layer
feat_out
=
{}
def
hook_fn_forward_qkv
(
module
,
input
,
output
):
feat_out
[
"
qkv
"
]
=
output
model
.
_modules
[
"
blocks
"
][
-
1
].
_modules
[
"
attn
"
].
_modules
[
"
qkv
"
].
register_forward_hook
(
hook_fn_forward_qkv
)
# Forward pass in the model
attentions
=
model
.
get_last_selfattention
(
img
[
None
,
:,
:,
:])
# Scaling factor
scales
=
[
args
.
patch_size
,
args
.
patch_size
]
# Dimensions
nb_im
=
attentions
.
shape
[
0
]
# Batch size
nh
=
attentions
.
shape
[
1
]
# Number of heads
nb_tokens
=
attentions
.
shape
[
2
]
# Number of tokens
# Baseline: compute DINO segmentation technique proposed in the DINO paper
# and select the biggest component
if
args
.
dinoseg
:
pred
=
dino_seg
(
attentions
,
(
w_featmap
,
h_featmap
),
args
.
patch_size
,
head
=
args
.
dinoseg_head
)
pred
=
np
.
asarray
(
pred
)
else
:
# Extract the qkv features of the last attention layer
qkv
=
(
feat_out
[
"
qkv
"
]
.
reshape
(
nb_im
,
nb_tokens
,
3
,
nh
,
-
1
//
nh
)
.
permute
(
2
,
0
,
3
,
1
,
4
)
)
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
k
=
k
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
q
=
q
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
v
=
v
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
# Modality selection
if
args
.
which_features
==
"
k
"
:
feats
=
k
[:,
1
:,
:]
elif
args
.
which_features
==
"
q
"
:
feats
=
q
[:,
1
:,
:]
elif
args
.
which_features
==
"
v
"
:
feats
=
v
[:,
1
:,
:]
elif
"
resnet
"
in
args
.
arch
:
x
=
model
.
forward
(
img
[
None
,
:,
:,
:])
d
,
w_featmap
,
h_featmap
=
x
.
shape
[
1
:]
feats
=
x
.
reshape
((
1
,
d
,
-
1
)).
transpose
(
2
,
1
)
# Apply layernorm
layernorm
=
nn
.
LayerNorm
(
feats
.
size
()[
1
:]).
to
(
device
)
feats
=
layernorm
(
feats
)
# Scaling factor
scales
=
[
float
(
img
.
shape
[
1
])
/
x
.
shape
[
2
],
float
(
img
.
shape
[
2
])
/
x
.
shape
[
3
],
]
elif
"
vgg16
"
in
args
.
arch
:
x
=
model
.
forward
(
img
[
None
,
:,
:,
:])
d
,
w_featmap
,
h_featmap
=
x
.
shape
[
1
:]
feats
=
x
.
reshape
((
1
,
d
,
-
1
)).
transpose
(
2
,
1
)
# Apply layernorm
layernorm
=
nn
.
LayerNorm
(
feats
.
size
()[
1
:]).
to
(
device
)
feats
=
layernorm
(
feats
)
# Scaling factor
scales
=
[
float
(
img
.
shape
[
1
])
/
x
.
shape
[
2
],
float
(
img
.
shape
[
2
])
/
x
.
shape
[
3
],
]
else
:
raise
ValueError
(
"
Unknown model.
"
)
# ------------ Apply LOST -------------------------------------------
if
not
args
.
dinoseg
:
preds
,
A
,
scores
,
seeds
=
lost
(
feats
,
[
w_featmap
,
h_featmap
],
scales
,
init_image_size
,
k_patches
=
args
.
k_patches
,
num_init_seeds
=
args
.
num_init_seeds
)
# ------------ Visualizations -------------------------------------------
if
args
.
visualize
==
"
fms
"
:
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
visualize_fms
(
A
.
clone
().
cpu
().
numpy
(),
seed
,
scores
,
[
w_featmap
,
h_featmap
],
scales
,
vis_folder
,
im_name
+
'
_
'
+
str
(
i
))
elif
args
.
visualize
==
"
seed_expansion
"
:
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
image
=
dataset
.
load_image
(
im_name
)
# Before expansion
pred_seed
,
_
=
detect_box
(
A
[
seed
,
:],
seed
,
[
w_featmap
,
h_featmap
],
scales
=
scales
,
initial_im_size
=
init_image_size
[
1
:],
)
visualize_seed_expansion
(
image
,
pred
,
seed
,
pred_seed
,
scales
,
[
w_featmap
,
h_featmap
],
vis_folder
,
im_name
+
'
_
'
+
str
(
i
))
elif
args
.
visualize
==
"
pred
"
:
image
=
dataset
.
load_image
(
im_name
)
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
image_name
=
None
if
i
==
len
(
preds
)
-
1
:
image_name
=
im_name
visualize_predictions
(
image
,
pred
,
seed
,
scales
,
[
w_featmap
,
h_featmap
],
vis_folder
,
image_name
)
# Save the prediction
#preds_dict[im_name] = preds
# Evaluation
if
args
.
no_evaluation
:
continue
# Compare prediction to GT boxes
for
pred
in
preds
:
if
len
(
preds
)
==
0
:
continue
if
len
(
gt_bbxs
)
==
0
:
break
# TODO: should do something else, should skip iou but count towards FP if pred exists
ious
=
bbox_iou
(
torch
.
from_numpy
(
pred
),
torch
.
from_numpy
(
np
.
asarray
(
gt_bbxs
)))
# TODO: This calculates the corloc
# we need to calculate the AP50
if
torch
.
any
(
ious
>=
0.50
):
#corloc[im_id] = 1
corloc
[
im_id
]
=
0
for
i
in
ious
:
if
i
>=
0.50
:
corloc
[
im_id
]
+=
1
cnt
+=
len
(
gt_bbxs
)
if
cnt
%
50
==
0
:
pbar
.
set_description
(
f
"
Found
{
int
(
np
.
sum
(
corloc
))
}
/
{
cnt
}
"
)
# Save predicted bounding boxes
if
args
.
save_predictions
:
folder
=
f
"
{
args
.
output_dir
}
/
{
exp_name
}
"
os
.
makedirs
(
folder
,
exist_ok
=
True
)
filename
=
os
.
path
.
join
(
folder
,
"
preds.pkl
"
)
with
open
(
filename
,
"
wb
"
)
as
f
:
pickle
.
dump
(
preds_dict
,
f
)
print
(
"
Predictions saved at %s
"
%
filename
)
# Evaluate
if
not
args
.
no_evaluation
:
print
(
f
"
corloc:
{
100
*
np
.
sum
(
corloc
)
/
cnt
:
.
2
f
}
(
{
int
(
np
.
sum
(
corloc
))
}
/
{
cnt
}
)
"
)
result_file
=
os
.
path
.
join
(
folder
,
'
results.txt
'
)
with
open
(
result_file
,
'
w
'
)
as
f
:
f
.
write
(
'
corloc,%.1f,,
\n
'
%
(
100
*
np
.
sum
(
corloc
)
/
cnt
))
print
(
'
File saved at %s
'
%
result_file
)
# Copyright 2021 - Valeo Comfort and Driving Assistance - Oriane Siméoni @ valeo.ai
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
import
random
import
pickle
import
torch
import
torch.nn
as
nn
import
numpy
as
np
from
tqdm
import
tqdm
from
PIL
import
Image
from
networks
import
get_model
from
datasets
import
ImageDataset
,
Dataset
,
bbox_iou
from
visualizations
import
visualize_fms
,
visualize_predictions
,
visualize_seed_expansion
from
object_discovery
import
lost
,
detect_box
,
dino_seg
if
__name__
==
"
__main__
"
:
parser
=
argparse
.
ArgumentParser
(
"
Unsupervised object discovery with LOST.
"
)
parser
.
add_argument
(
"
--arch
"
,
default
=
"
vit_small
"
,
type
=
str
,
choices
=
[
"
vit_tiny
"
,
"
vit_small
"
,
"
vit_base
"
,
"
resnet50
"
,
"
vgg16_imagenet
"
,
"
resnet50_imagenet
"
,
],
help
=
"
Model architecture.
"
,
)
parser
.
add_argument
(
"
--patch_size
"
,
default
=
16
,
type
=
int
,
help
=
"
Patch resolution of the model.
"
)
# Use a dataset
parser
.
add_argument
(
"
--dataset
"
,
default
=
"
VOC07
"
,
type
=
str
,
choices
=
[
None
,
"
VOC07
"
,
"
VOC12
"
,
"
COCO20k
"
],
help
=
"
Dataset name.
"
,
)
parser
.
add_argument
(
"
--set
"
,
default
=
"
train
"
,
type
=
str
,
choices
=
[
"
val
"
,
"
train
"
,
"
trainval
"
,
"
test
"
],
help
=
"
Path of the image to load.
"
,
)
# Or use a single image
parser
.
add_argument
(
"
--image_path
"
,
type
=
str
,
default
=
None
,
help
=
"
If want to apply only on one image, give file path.
"
,
)
# Folder used to output visualizations and
parser
.
add_argument
(
"
--output_dir
"
,
type
=
str
,
default
=
"
outputs
"
,
help
=
"
Output directory to store predictions and visualizations.
"
)
# Evaluation setup
parser
.
add_argument
(
"
--no_hard
"
,
action
=
"
store_true
"
,
help
=
"
Only used in the case of the VOC_all setup (see the paper).
"
)
parser
.
add_argument
(
"
--no_evaluation
"
,
action
=
"
store_true
"
,
help
=
"
Compute the evaluation.
"
)
parser
.
add_argument
(
"
--save_predictions
"
,
default
=
True
,
type
=
bool
,
help
=
"
Save predicted bouding boxes.
"
)
parser
.
add_argument
(
"
--num_init_seeds
"
,
default
=
1
,
type
=
int
,
help
=
"
Number of initial seeds to expand from.
"
)
# Visualization
parser
.
add_argument
(
"
--visualize
"
,
type
=
str
,
choices
=
[
"
fms
"
,
"
seed_expansion
"
,
"
pred
"
,
None
],
default
=
None
,
help
=
"
Select the different type of visualizations.
"
,
)
# For ResNet dilation
parser
.
add_argument
(
"
--resnet_dilate
"
,
type
=
int
,
default
=
2
,
help
=
"
Dilation level of the resnet model.
"
)
# LOST parameters
parser
.
add_argument
(
"
--which_features
"
,
type
=
str
,
default
=
"
k
"
,
choices
=
[
"
k
"
,
"
q
"
,
"
v
"
],
help
=
"
Which features to use
"
,
)
parser
.
add_argument
(
"
--k_patches
"
,
type
=
int
,
default
=
100
,
help
=
"
Number of patches with the lowest degree considered.
"
)
# Use dino-seg proposed method
parser
.
add_argument
(
"
--dinoseg
"
,
action
=
"
store_true
"
,
help
=
"
Apply DINO-seg baseline.
"
)
parser
.
add_argument
(
"
--dinoseg_head
"
,
type
=
int
,
default
=
4
)
args
=
parser
.
parse_args
()
if
args
.
image_path
is
not
None
:
args
.
save_predictions
=
False
args
.
no_evaluation
=
True
args
.
dataset
=
None
# -------------------------------------------------------------------------------------------------------
# Dataset
# If an image_path is given, apply the method only to the image
if
args
.
image_path
is
not
None
:
dataset
=
ImageDataset
(
args
.
image_path
)
else
:
dataset
=
Dataset
(
args
.
dataset
,
args
.
set
,
args
.
no_hard
)
# -------------------------------------------------------------------------------------------------------
# Model
device
=
torch
.
device
(
"
cuda
"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"
cpu
"
)
print
(
"
Running on device:
"
,
device
)
model
=
get_model
(
args
.
arch
,
args
.
patch_size
,
args
.
resnet_dilate
,
device
)
# -------------------------------------------------------------------------------------------------------
# Directories
if
args
.
image_path
is
None
:
args
.
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
dataset
.
name
)
os
.
makedirs
(
args
.
output_dir
,
exist_ok
=
True
)
# Naming
if
args
.
dinoseg
:
# Experiment with the baseline DINO-seg
if
"
vit
"
not
in
args
.
arch
:
raise
ValueError
(
"
DINO-seg can only be applied to tranformer networks.
"
)
exp_name
=
f
"
{
args
.
arch
}
-
{
args
.
patch_size
}
_dinoseg-head
{
args
.
dinoseg_head
}
"
else
:
# Experiment with LOST
exp_name
=
f
"
LOST-
{
args
.
arch
}
"
if
"
resnet
"
in
args
.
arch
:
exp_name
+=
f
"
dilate
{
args
.
resnet_dilate
}
"
elif
"
vit
"
in
args
.
arch
:
exp_name
+=
f
"
{
args
.
patch_size
}
_
{
args
.
which_features
}
"
print
(
f
"
Running LOST on the dataset
{
dataset
.
name
}
(exp:
{
exp_name
}
)
"
)
# Visualization
if
args
.
visualize
:
vis_folder
=
f
"
{
args
.
output_dir
}
/visualizations/
{
exp_name
}
"
os
.
makedirs
(
vis_folder
,
exist_ok
=
True
)
# -------------------------------------------------------------------------------------------------------
# Loop over images
preds_dict
=
{}
gt_dict
=
{}
cnt
=
0
corloc
=
np
.
zeros
(
len
(
dataset
.
dataloader
))
pbar
=
tqdm
(
dataset
.
dataloader
)
for
im_id
,
inp
in
enumerate
(
pbar
):
torch
.
cuda
.
empty_cache
()
# ------------ IMAGE PROCESSING -------------------------------------------
img
=
inp
[
0
]
init_image_size
=
img
.
shape
# Get the name of the image
im_name
=
dataset
.
get_image_name
(
inp
[
1
])
# Pass in case of no gt boxes in the image
if
im_name
is
None
:
continue
# Padding the image with zeros to fit multiple of patch-size
size_im
=
(
img
.
shape
[
0
],
int
(
np
.
ceil
(
img
.
shape
[
1
]
/
args
.
patch_size
)
*
args
.
patch_size
),
int
(
np
.
ceil
(
img
.
shape
[
2
]
/
args
.
patch_size
)
*
args
.
patch_size
),
)
paded
=
torch
.
zeros
(
size_im
)
paded
[:,
:
img
.
shape
[
1
],
:
img
.
shape
[
2
]]
=
img
img
=
paded
# Move to gpu
if
device
==
torch
.
device
(
"
cuda
"
):
img
=
img
.
cuda
(
non_blocking
=
True
)
# Size for transformers
w_featmap
=
img
.
shape
[
-
2
]
//
args
.
patch_size
h_featmap
=
img
.
shape
[
-
1
]
//
args
.
patch_size
# ------------ GROUND-TRUTH -------------------------------------------
if
not
args
.
no_evaluation
:
gt_bbxs
,
gt_cls
=
dataset
.
extract_gt
(
inp
[
1
],
im_name
)
if
gt_bbxs
is
not
None
:
# Discard images with no gt annotations
# Happens only in the case of VOC07 and VOC12
if
gt_bbxs
.
shape
[
0
]
==
0
and
args
.
no_hard
:
continue
# ------------ EXTRACT FEATURES -------------------------------------------
with
torch
.
no_grad
():
# ------------ FORWARD PASS -------------------------------------------
if
"
vit
"
in
args
.
arch
:
# Store the outputs of qkv layer from the last attention layer
feat_out
=
{}
def
hook_fn_forward_qkv
(
module
,
input
,
output
):
feat_out
[
"
qkv
"
]
=
output
model
.
_modules
[
"
blocks
"
][
-
1
].
_modules
[
"
attn
"
].
_modules
[
"
qkv
"
].
register_forward_hook
(
hook_fn_forward_qkv
)
# Forward pass in the model
attentions
=
model
.
get_last_selfattention
(
img
[
None
,
:,
:,
:])
# Scaling factor
scales
=
[
args
.
patch_size
,
args
.
patch_size
]
# Dimensions
nb_im
=
attentions
.
shape
[
0
]
# Batch size
nh
=
attentions
.
shape
[
1
]
# Number of heads
nb_tokens
=
attentions
.
shape
[
2
]
# Number of tokens
# Baseline: compute DINO segmentation technique proposed in the DINO paper
# and select the biggest component
if
args
.
dinoseg
:
pred
=
dino_seg
(
attentions
,
(
w_featmap
,
h_featmap
),
args
.
patch_size
,
head
=
args
.
dinoseg_head
)
pred
=
np
.
asarray
(
pred
)
else
:
# Extract the qkv features of the last attention layer
qkv
=
(
feat_out
[
"
qkv
"
]
.
reshape
(
nb_im
,
nb_tokens
,
3
,
nh
,
-
1
//
nh
)
.
permute
(
2
,
0
,
3
,
1
,
4
)
)
q
,
k
,
v
=
qkv
[
0
],
qkv
[
1
],
qkv
[
2
]
k
=
k
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
q
=
q
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
v
=
v
.
transpose
(
1
,
2
).
reshape
(
nb_im
,
nb_tokens
,
-
1
)
# Modality selection
if
args
.
which_features
==
"
k
"
:
feats
=
k
[:,
1
:,
:]
elif
args
.
which_features
==
"
q
"
:
feats
=
q
[:,
1
:,
:]
elif
args
.
which_features
==
"
v
"
:
feats
=
v
[:,
1
:,
:]
elif
"
resnet
"
in
args
.
arch
:
x
=
model
.
forward
(
img
[
None
,
:,
:,
:])
d
,
w_featmap
,
h_featmap
=
x
.
shape
[
1
:]
feats
=
x
.
reshape
((
1
,
d
,
-
1
)).
transpose
(
2
,
1
)
# Apply layernorm
layernorm
=
nn
.
LayerNorm
(
feats
.
size
()[
1
:]).
to
(
device
)
feats
=
layernorm
(
feats
)
# Scaling factor
scales
=
[
float
(
img
.
shape
[
1
])
/
x
.
shape
[
2
],
float
(
img
.
shape
[
2
])
/
x
.
shape
[
3
],
]
elif
"
vgg16
"
in
args
.
arch
:
x
=
model
.
forward
(
img
[
None
,
:,
:,
:])
d
,
w_featmap
,
h_featmap
=
x
.
shape
[
1
:]
feats
=
x
.
reshape
((
1
,
d
,
-
1
)).
transpose
(
2
,
1
)
# Apply layernorm
layernorm
=
nn
.
LayerNorm
(
feats
.
size
()[
1
:]).
to
(
device
)
feats
=
layernorm
(
feats
)
# Scaling factor
scales
=
[
float
(
img
.
shape
[
1
])
/
x
.
shape
[
2
],
float
(
img
.
shape
[
2
])
/
x
.
shape
[
3
],
]
else
:
raise
ValueError
(
"
Unknown model.
"
)
# ------------ Apply LOST -------------------------------------------
if
not
args
.
dinoseg
:
preds
,
A
,
scores
,
seeds
=
lost
(
feats
,
[
w_featmap
,
h_featmap
],
scales
,
init_image_size
,
k_patches
=
args
.
k_patches
,
num_init_seeds
=
args
.
num_init_seeds
)
# ------------ Visualizations -------------------------------------------
if
args
.
visualize
==
"
fms
"
:
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
visualize_fms
(
A
.
clone
().
cpu
().
numpy
(),
seed
,
scores
,
[
w_featmap
,
h_featmap
],
scales
,
vis_folder
,
im_name
+
'
_
'
+
str
(
i
))
elif
args
.
visualize
==
"
seed_expansion
"
:
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
image
=
dataset
.
load_image
(
im_name
)
# Before expansion
pred_seed
,
_
=
detect_box
(
A
[
seed
,
:],
seed
,
[
w_featmap
,
h_featmap
],
scales
=
scales
,
initial_im_size
=
init_image_size
[
1
:],
)
visualize_seed_expansion
(
image
,
pred
,
seed
,
pred_seed
,
scales
,
[
w_featmap
,
h_featmap
],
vis_folder
,
im_name
+
'
_
'
+
str
(
i
))
elif
args
.
visualize
==
"
pred
"
:
image
=
dataset
.
load_image
(
im_name
)
for
i
,
x
in
enumerate
(
zip
(
preds
,
seeds
)):
pred
,
seed
=
x
image_name
=
None
if
i
==
len
(
preds
)
-
1
:
image_name
=
im_name
visualize_predictions
(
image
,
pred
,
seed
,
scales
,
[
w_featmap
,
h_featmap
],
vis_folder
,
image_name
)
# Save the prediction
#preds_dict[im_name] = preds
# Evaluation
if
args
.
no_evaluation
:
continue
# Initialize variables for AP50 calculation
tp
=
0
fp
=
0
total_gt_boxes
=
len
(
gt_bbxs
)
ap50
=
0
# Compare prediction to GT boxes
for
pred
in
preds
:
if
len
(
preds
)
==
0
:
continue
if
len
(
gt_bbxs
)
==
0
:
break
# TODO: should do something else, should skip iou but count towards FP if pred exists
ious
=
bbox_iou
(
torch
.
from_numpy
(
pred
),
torch
.
from_numpy
(
np
.
asarray
(
gt_bbxs
)))
# TODO: This calculates the corloc
if
torch
.
any
(
ious
>=
0.50
):
#corloc[im_id] = 1
corloc
[
im_id
]
=
0
for
i
in
ious
:
if
i
>=
0.50
:
corloc
[
im_id
]
+=
1
# Count true positives and false positives at IoU threshold of 0.5
if
torch
.
any
(
ious
>=
0.50
):
tp
+=
1
else
:
fp
+=
1
cnt
+=
len
(
gt_bbxs
)
if
cnt
%
50
==
0
:
pbar
.
set_description
(
f
"
Found
{
int
(
np
.
sum
(
corloc
))
}
/
{
cnt
}
"
)
# Calculate precision and recall at IoU threshold of 0.5
precision
=
tp
/
(
tp
+
fp
)
recall
=
tp
/
total_gt_boxes
# Calculate AP50 as average precision at IoU threshold of 0.5
ap50
=
precision
*
recall
print
(
f
"
AP50:
{
ap50
:
.
2
f
}
"
)
# Save predicted bounding boxes
if
args
.
save_predictions
:
folder
=
f
"
{
args
.
output_dir
}
/
{
exp_name
}
"
os
.
makedirs
(
folder
,
exist_ok
=
True
)
filename
=
os
.
path
.
join
(
folder
,
"
preds.pkl
"
)
with
open
(
filename
,
"
wb
"
)
as
f
:
pickle
.
dump
(
preds_dict
,
f
)
print
(
"
Predictions saved at %s
"
%
filename
)
# Evaluate
if
not
args
.
no_evaluation
:
print
(
f
"
corloc:
{
100
*
np
.
sum
(
corloc
)
/
cnt
:
.
2
f
}
(
{
int
(
np
.
sum
(
corloc
))
}
/
{
cnt
}
)
"
)
result_file
=
os
.
path
.
join
(
folder
,
'
results.txt
'
)
with
open
(
result_file
,
'
w
'
)
as
f
:
f
.
write
(
'
corloc,%.1f,,
\n
'
%
(
100
*
np
.
sum
(
corloc
)
/
cnt
))
print
(
'
File saved at %s
'
%
result_file
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment